Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2016, Number 4(42), Pages 5–14
DOI: https://doi.org/10.17223/19988621/42/1
(Mi vtgu533)
 

MATHEMATICS

Mathematical simulation of a profile cutter for processing parts of a cylindrical gear

A. M. Bubenchikova, S. M. Kazakavitschjusb, A. A. Kostareva, N. R. Shcherbakova, I. V. Shcherbakovaa

a Tomsk State University, Tomsk, Russian Federation
b CJSC Technology market Tomsk, Tomsk, Russian Federation
References:
Abstract: Various types of cutters (spherical, toroidal, etc.) are used for processing surfaces of transmission gear parts. The cost of a special forming tool is somewhat higher than that of such cutters. However, the increase in the cost pays a significant reduction in time necessary for processing parts. The paper presents mathematical simulation of a profile cutter (as a surface of revolution) for processing parts of a cylindrical transmission gear with an eccentrically cycloidal gearing (EC-gearing). In part 1 this problem is solved for the input part. The surface of the cutter is constructed as a family of circles with increasing radii in planes perpendicular to the axis of the cutter, the centres lying on this axis. We have obtained an equation for the family of curves, which are cross sections of the tooth surface of the gear by these planes. It is these curves that must be touched by circles forming the surface of the profile cutter. The requirement of the circles touching the curves of the family leads to a system of equations which allows finding the radii of the circles depending on the height of the cross section rise. The solution to this system is found analytically, which eventually leads to one equation for one unknown. The root of this transcendental equation is found numerically. A similar scheme is used in part 2 to find the equation of the profile cutter’s surface for the output part. A computer program has been made aiming to specify the radii of the cutter’s circular cross-sections for a given set of displacements along the axis of rotation. The work provided substantial assistance in manufacturing ECengagement parts for gears of various types.
Keywords: profile cutter, eccentrically cycloidal (EC) gearing, contingence of curves.
Received: 16.05.2016
Bibliographic databases:
Document Type: Article
UDC: 514.8, 62.342
Language: Russian
Citation: A. M. Bubenchikov, S. M. Kazakavitschjus, A. A. Kostarev, N. R. Shcherbakov, I. V. Shcherbakova, “Mathematical simulation of a profile cutter for processing parts of a cylindrical gear”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 4(42), 5–14
Citation in format AMSBIB
\Bibitem{BubKazKos16}
\by A.~M.~Bubenchikov, S.~M.~Kazakavitschjus, A.~A.~Kostarev, N.~R.~Shcherbakov, I.~V.~Shcherbakova
\paper Mathematical simulation of a profile cutter for processing parts of a cylindrical gear
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2016
\issue 4(42)
\pages 5--14
\mathnet{http://mi.mathnet.ru/vtgu533}
\crossref{https://doi.org/10.17223/19988621/42/1}
\elib{https://elibrary.ru/item.asp?id=26674675}
Linking options:
  • https://www.mathnet.ru/eng/vtgu533
  • https://www.mathnet.ru/eng/vtgu/y2016/i4/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :52
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024