Loading [MathJax]/jax/output/SVG/config.js
Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2016, Number 3(41), Pages 51–57
DOI: https://doi.org/10.17223/19988621/41/5
(Mi vtgu527)
 

This article is cited in 2 scientific papers (total in 2 papers)

MECHANICS

The wave permeability of a compacted nanoparticle layer

A. M. Bubenchikova, M. A. Bubenchikovb, V. A. Poteryaevaa, E. E. Libina

a National Research Tomsk State University, Tomsk, Russian Federation
b GazpromTransgaz Tomsk, Tomsk, Russian Federation
Full-text PDF (442 kB) Citations (2)
References:
Abstract: The simplest example of the porous filtering system is a compacted material obtained by pressing spherical nanoparticles. Filtration characteristics of this material depend on mobility of molecules in the field of van der Waals forces.
А one-dimensional wave dynamic problem of the helium molecules motion through the ultrathin porous layer of compacted diamond nanoparticles is considered. These layers of matter make a potential barrier obstructing the passage of molecules. The permeability of the layer is derived by solving the Schrödinger equation.
The calculation technology for integration of the Schrödinger equation is suggested. It is based on two fundamental numerical solutions of the problem of waves passing through the barrier of potential forces. A linear combination of these solutions determinates the wave function. The square of this function is a probability of detecting molecules in a particular place. Linking this representation of wave function with asymptotic boundary conditions makes it possible to determine the coefficients of passing and reflecting of molecules from the barrier. The barrier is the energy of compacted nanoparticles.
This technology provides with results close to the analytical solution in particular cases. This fact allows to generalize the method to the case of molecular movement through the layer of nanoparticles and to determine the dependence between permeability and porosity of the layer.
Keywords: potential force field, nanoparticles, molecular motion, numerical method, permeability, Schrödinger equation.
Received: 11.03.2016
Bibliographic databases:
Document Type: Article
UDC: 532.5
Language: Russian
Citation: A. M. Bubenchikov, M. A. Bubenchikov, V. A. Poteryaeva, E. E. Libin, “The wave permeability of a compacted nanoparticle layer”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 3(41), 51–57
Citation in format AMSBIB
\Bibitem{BubBubPot16}
\by A.~M.~Bubenchikov, M.~A.~Bubenchikov, V.~A.~Poteryaeva, E.~E.~Libin
\paper The wave permeability of a compacted nanoparticle layer
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2016
\issue 3(41)
\pages 51--57
\mathnet{http://mi.mathnet.ru/vtgu527}
\crossref{https://doi.org/10.17223/19988621/41/5}
\elib{https://elibrary.ru/item.asp?id=26224726}
Linking options:
  • https://www.mathnet.ru/eng/vtgu527
  • https://www.mathnet.ru/eng/vtgu/y2016/i3/p51
  • This publication is cited in the following 2 articles:
    1. V. A. Poteryaeva, A. M. Bubenchikov, M. A. Bubenchikov, A. V. Lun-Fu, S. Jambaa, “Helium isotope separation by bi-layer membranes of G-C3N4”, Adv. Nat. Sci.-Nanosci Nanotechnol, 12:4 (2021), 045005  crossref  isi  scopus
    2. V. A. Poteryaeva, “Matematicheskaya model selektivnoi nanopory”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2020, no. 65, 114–123  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:254
    Full-text PDF :78
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025