Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2016, Number 2(40), Pages 19–32
DOI: https://doi.org/10.17223/19988621/40/2
(Mi vtgu514)
 

MATHEMATICS

Special functions generated by rising and central factorial powers

T. P. Goy

Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
References:
Abstract: Replacing in the well-known series $\cos x=\sum\limits_{n=0}^\infty\frac{(-1)^nx^{2n}}{(2n)!}$, $\sin x=\sum\limits_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{(2n+1)!}$ falling factorial powers ($m!=m^{\underline{m}}$) by rising and central factorial powers ($m^{\overline{m}}$ and $m^{[m]}$ respectively), we obtain real functions $\mathrm{Cos}\, x=\sum\limits_{n=0}^\infty\frac{(-1)^nx^{2n}}{(2n)^{\overline{2n}}}$, $\mathrm{Sin}\, x=\sum\limits_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{(2n+1)^{\overline{2n+1}}}$, $\mathrm{Cosc}\, x=\sum\limits_{n=0}^\infty\frac{(-1)^nx^{2n}}{(2n)^{[2n]}}$, and $\mathrm{Sinc}\, x=\sum\limits_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{(2n+1)^{[2n+1]}}$.
In this paper, we consider the non-elementary Fresnel-type integral functions $C_1(x)=\int\limits_0^x\mathrm{Cos}\,t^2 dt$, $S_1(x)=\int\limits_0^x\mathrm{Sin}\,t^2 dt$, $C_2(x)=\int\limits_0^x\mathrm{Cosc}\,t^2 dt$, $S_2(x)=\int\limits_0^x\mathrm{Sinc}\,t^2 dt$. We prove the following formulas:
\begin{gather*} C_1(x)=4\left(\cos\frac{x^2}4 C\left(\frac x2\right)+\sin\frac{x^2}4 S\left(\frac x2\right)\right)-x,\\ S_1(x)=4\left(\sin\frac{x^2}4 C\left(\frac x2\right)-\cos\frac{x^2}4 S\left(\frac x2\right)\right),\\ C_2(x)=x-\frac{x^5}{20}{}_2F_3\left(1,\frac54;\frac43,\frac53,\frac94;-\frac{x^4}{27}\right),\quad S_2(x)=\frac{x^3}3{}_2F_3\left(\frac34,1;\frac56,\frac76,\frac74;-\frac{x^4}{27}\right), \end{gather*}
where $C(p)$ and $S(p)$ are Fresnel integrals and $_2F_3(a_1,a_2;b_1,b_2,b_3;z)$ is a generalized hypergeometric function.
We also show that functions $C_1(x)$, $S_1(x)$ are solutions of the ordinary linear second-order differential equations $4xy''-4y'+x^3y=-x^4-4$ and $4xy''-4y'+x^3y=4x^2$, respectively, and the functions $C_2(x)$, $S_2(x)$ are solutions of the ordinary linear fourth-order differential equations $27x^3y^{IV}-135x^2y'''+(16x^5+339)y''-384y'=-384$ and $27x^3y^{IV}-81x^2y'''+(16x^5+177x)y''+(32x^4-192)y'=0$, respectively.
Keywords: rising factorial power, central factorial power, Fresnel integrals, generalized hypergeometric function, Cauchy problem.
Received: 12.09.2015
Bibliographic databases:
Document Type: Article
UDC: 517.589, 517.926.4
Language: Russian
Citation: T. P. Goy, “Special functions generated by rising and central factorial powers”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 2(40), 19–32
Citation in format AMSBIB
\Bibitem{Lee16}
\by T.~P.~Goy
\paper Special functions generated by rising and central factorial powers
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2016
\issue 2(40)
\pages 19--32
\mathnet{http://mi.mathnet.ru/vtgu514}
\crossref{https://doi.org/10.17223/19988621/40/2}
\elib{https://elibrary.ru/item.asp?id=25897044}
Linking options:
  • https://www.mathnet.ru/eng/vtgu514
  • https://www.mathnet.ru/eng/vtgu/y2016/i2/p19
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:392
    Full-text PDF :161
    References:114
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024