Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2015, Number 6(38), Pages 27–32
DOI: https://doi.org/10.17223/19988621/38/3
(Mi vtgu490)
 

This article is cited in 4 scientific papers (total in 4 papers)

MATHEMATICS

On commuting elements of a group

A. I. Zabarina, U. A. Guselnikova, E. A. Fomina

Tomsk State Pedagogical University, Tomsk, Russian Federation
Full-text PDF (412 kB) Citations (4)
References:
Abstract: Let $G$ be an arbitrary group. An element g is trivially commuting if it does not commute with any other elements but itself and unity. We call an element as non-trivially commuting if it is not trivially commuting. Sets of all trivially commuting elements, non-trivially commuting elements, and involutions of the group are denoted by $U$, $W$$J$.
Proposition 1. $U\subset J$.
Proposition 2.
  • An element conjugate to a trivially commuting element is a trivially commuting element; an element conjugate to a not trivially commuting element is a non-trivially commuting element элемент: $\forall u\in U\ \forall w\in W\ \forall g\in G (u^g\in U\ w^g\in W)$.
  • A product of two trivially commuting elements is a non-trivially commuting element: $u_1\in U, u_2\in U\Rightarrow u_1u_2\in W$.

Theorem 3. If the set of trivially commuting elements of a finite group is not empty, they are exactly half to the group: let $|G|=n$, $|U|\ne0$, then $|U|=|W|$.
Corollary 4. Let $|G|= n$, $|U|\ne0$, then
  • $\forall w\in W\ \forall u^*\in U\ \exists u', u''\in U (w=u^*u'=u''u^*)$;
  • $U=J$;
  • $|G|=n= 4q+2$.

Theorem 5. Let $|G|=n$, $|U|\ne0$, then $W$ is a commutative normal divisor of the group $G$.
Proposition 6. Let $\langle A, \cdot\rangle$, be an Abelian group with the involution and $\langle D(A), \circ\rangle$ be a generalized dihedral group. Then the set $U$ of trivial commuting elements of the group $D(A)$ is empty.
Theorem 7. Let $\langle D(A), \circ\rangle$ be a generalized dihedral group and let the group $A$ have no involutions. Then the set $U$ of trivially commuting elements of the group $D(A)$ is the set $\{(a, -1)\mid a\in A\}$, $|U|=|W|$.
Theorem 8. Let $\langle G, \cdot\rangle$ be a group, the set of involutions $J$ of the group $G$ be not empty, and the set $H=G\setminus J$ be a subgroup, $H\ne\{e\}$. Then
  • $H$ is a commutative normal divisor of $G$; $|G/H|=2$;
  • The set $U$ of trivially commuting elements of the group $G$ coincides with $J$ and $|W|=|U|$;
  • $G\cong D(H)$.
Keywords: group, involution, commuting element, conjugate element, generalized dihedral group.
Received: 20.10.2015
Bibliographic databases:
Document Type: Article
UDC: 512.543
Language: Russian
Citation: A. I. Zabarina, U. A. Guselnikova, E. A. Fomina, “On commuting elements of a group”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015, no. 6(38), 27–32
Citation in format AMSBIB
\Bibitem{ZabGusFom15}
\by A.~I.~Zabarina, U.~A.~Guselnikova, E.~A.~Fomina
\paper On commuting elements of a group
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2015
\issue 6(38)
\pages 27--32
\mathnet{http://mi.mathnet.ru/vtgu490}
\crossref{https://doi.org/10.17223/19988621/38/3}
\elib{https://elibrary.ru/item.asp?id=25302173}
Linking options:
  • https://www.mathnet.ru/eng/vtgu490
  • https://www.mathnet.ru/eng/vtgu/y2015/i6/p27
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:123
    Full-text PDF :43
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024