Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2015, Number 6(38), Pages 18–26
DOI: https://doi.org/10.17223/19988621/38/2
(Mi vtgu489)
 

MATHEMATICS

Orthogonalities in the multiplicative group $\mathbb{Q}_+$

S. Ya. Grinshpon, S. L. Fukson
References:
Abstract: The relation of orthogonality in various algebraic structures arouses the interest of mathematicians. For example, Davis proposed an interesting approach to the introduction of orthogonality in Abelian groups (Orthogonality relation on Abelian groups. Journal of the Australian Mathematical Society. Series A, vol. 19, 1975); F. Eugeni, B. Rizzi (An incidence algebra on rational numbers. Rendiconti di Matematica, vol. 12, 1979) and G. Birkhoff (Lattice theory. Providence. Rhode Island, 1965) explored orthogonality in ortholattices; Kopytov V.M. (Lattice-Ordered Groups, Nauka, Moscow, 1984) notes that the concept of orthogonality plays an important role in the whole theory of l-groups.
Haukkanen and others (Perpendicularity in an Abelian group. International Journal of Mathematics and Mathematical Sciences, vol. 13, 2013) introduced the concept of orthogonality in an Abelian group with the help of axioms.
The purpose of the present paper is to get some results about orthogonalities in the multiplicative Abelian group of positive rational numbers. We describe the known orthogonalities of and show that one of the relations of that was introduced in the article of Haukkanen is not an orthogonality. We construct an infinite set of new orthogonalities in by two different ways.
Keywords: orthogonality, Abelian group, divisibility in $\mathbb{Q}_+$, free Abelian group.
Received: 27.09.2015
Bibliographic databases:
Document Type: Article
UDC: 512.541.32
Language: Russian
Citation: S. Ya. Grinshpon, S. L. Fukson, “Orthogonalities in the multiplicative group $\mathbb{Q}_+$”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015, no. 6(38), 18–26
Citation in format AMSBIB
\Bibitem{GriFuk15}
\by S.~Ya.~Grinshpon, S.~L.~Fukson
\paper Orthogonalities in the multiplicative group~$\mathbb{Q}_+$
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2015
\issue 6(38)
\pages 18--26
\mathnet{http://mi.mathnet.ru/vtgu489}
\crossref{https://doi.org/10.17223/19988621/38/2}
\elib{https://elibrary.ru/item.asp?id=25302172}
Linking options:
  • https://www.mathnet.ru/eng/vtgu489
  • https://www.mathnet.ru/eng/vtgu/y2015/i6/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:232
    Full-text PDF :57
    References:91
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024