Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2015, Number 5(37), Pages 48–55
DOI: https://doi.org/10.17223/19988621/37/4
(Mi vtgu481)
 

MATHEMATICS

Contact metric structures on 3-dimentional non-unimodular Lie groups

A. G. Sedykh

Kemerovo Institute of Plekhanov Russian University of Economics, Kemerovo, Russian Federation
References:
Abstract: Definition 1. A differentiable $(2n+1)$-dimensional manifold $M$ of the class $C^\infty$ is called a contact manifold if there exists a differential $1$-form $\eta$ on $M^{2n+1}$, such that $(\eta\land d\eta)^n\ne0$. The form $\eta$ is called a contact form.
Definition 2. If $M^{2n+1}$ is a contact manifold with a contact form $\eta$, then a contact metric structure is the quadruple $(\eta,\xi,\varphi,g)$, where $\xi$ is a Reeb’s field, $g$ is a Riemannian metric, and $\varphi$ is an affinor on $M^{2n+1}$, for which the following properties are valid:
  • $\varphi^2=-I+\eta\otimes\xi$,
  • $d\eta(X,Y)=g(X,\varphi Y)$,
  • $g(\varphi X,\varphi Y)=g(X,Y)-\eta(X)\eta(Y)$.
We consider a non-unimodular Lie group $G$; its Lie algebra has a basis $e_1$, $e_2$, $e_3$ such that $[e_1,e_2]=\alpha e_2+\beta e_3$, $[e_1,e_3]=\gamma e_2+\delta e_3$, $[e_2,e_3]=0$, and matrix $A=\begin{pmatrix}\alpha & \beta\\ \gamma & \delta\end{pmatrix}$ has a trace $\alpha+\delta=2$.
The left invariant $1$-form $\eta=a_1\theta^1+a_2\theta^2+a_3\theta^3$ defines a contact structure on the group $G$ if $(\delta-\alpha)a_2a_3-\beta a_3^2+\gamma a_2^2\ne0$.
As a contact form, we choose the simplest one, $\eta=\theta^3$, $\varphi_0=\begin{pmatrix}0&-1&0\\ 1&0&0\\ 0&0&0\end{pmatrix}$, and consider other metrics that also define a contact metric form.
We obtain that a contact metric structure on a non-unimodular Lie group can be set by the quadruple $(\eta,\xi,\varphi,g)$, where
$$ \eta=\theta^3, \quad \xi=e_3, \quad, \varphi= \begin{pmatrix} \frac{2\rho\sin\alpha_1}{-1+\rho^2} & \frac{-1+2\rho\cos\alpha_1-\rho^2}{1-\rho^2} & 0\\ \frac{1+2\rho\cos\alpha_1+\rho^2}{1-\rho^2} & \frac{2\rho\sin\alpha_1}{1-\rho^2} & 0\\ 0& 0& 1 \end{pmatrix}. $$
Keywords: Lie group, contact form, contact metric structure.
Received: 20.04.2015
Bibliographic databases:
Document Type: Article
UDC: 514.76
Language: Russian
Citation: A. G. Sedykh, “Contact metric structures on 3-dimentional non-unimodular Lie groups”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015, no. 5(37), 48–55
Citation in format AMSBIB
\Bibitem{Sed15}
\by A.~G.~Sedykh
\paper Contact metric structures on 3-dimentional non-unimodular Lie groups
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2015
\issue 5(37)
\pages 48--55
\mathnet{http://mi.mathnet.ru/vtgu481}
\crossref{https://doi.org/10.17223/19988621/37/4}
\elib{https://elibrary.ru/item.asp?id=24906925}
Linking options:
  • https://www.mathnet.ru/eng/vtgu481
  • https://www.mathnet.ru/eng/vtgu/y2015/i5/p48
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024