Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2015, Number 2(34), Pages 30–40
DOI: https://doi.org/10.17223/19988621/34/3
(Mi vtgu448)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On $2$-ordered groups

G. G. Pestova, A. I. Zabarinab, A. A. Tobolkinc, E. A. Fominab

a Tomsk State University, Tomsk, Russian Federation
b Tomsk State Pedagogical University, Tomsk, Russian Federation
c Tomsk Academic Lyceum, Tomsk, Russian Federation
Full-text PDF (440 kB) Citations (1)
References:
Abstract: Let $h(x, y, z)$ denote the standard orientation of the plane $\mathbf{R}^2$. Let $M$ be a non-empty set, $\zeta: M\to\{0, +1, -1\}$.
If for every subset $A$ of a set $M$, $|A|\leqslant 5$, there exists a map $\phi: A\to\mathbf{R}^2$, such that $x, y, z\in A$ implies
$$ \zeta(x, y, z)=\eta(\phi(x), \phi(y), \phi(z)), $$
then $(M, \zeta)$ is called a $2$-ordered set and $\zeta$ is called a $2$-order function on $M$.
If $\zeta$ is a $2$-order function on a group $G$ such that for every $x, y, z, a$ from the group $G$ the equality
$$ \zeta(ax, ay, az)=\zeta(xa, ya, za)=\zeta(x, y, z) $$
holds, then $G$ is said to be a $2$-ordered group.
The paper contains new examples of $2$-ordered groups. It is proved that every $2$-ordered group contains only one involution or none. A criterion is formulated for a straight line in a $2$-ordered group $G$ to be a subgroup of $G$.
Keywords: two-dimensional order, $2$-ordered group, involution, straight line.
Received: 15.03.2015
Bibliographic databases:
Document Type: Article
UDC: 519.46
Language: Russian
Citation: G. G. Pestov, A. I. Zabarina, A. A. Tobolkin, E. A. Fomina, “On $2$-ordered groups”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015, no. 2(34), 30–40
Citation in format AMSBIB
\Bibitem{PesZabTob15}
\by G.~G.~Pestov, A.~I.~Zabarina, A.~A.~Tobolkin, E.~A.~Fomina
\paper On $2$-ordered groups
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2015
\issue 2(34)
\pages 30--40
\mathnet{http://mi.mathnet.ru/vtgu448}
\crossref{https://doi.org/10.17223/19988621/34/3}
\elib{https://elibrary.ru/item.asp?id=23334936}
Linking options:
  • https://www.mathnet.ru/eng/vtgu448
  • https://www.mathnet.ru/eng/vtgu/y2015/i2/p30
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :53
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024