|
Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2014, Number 6(32), Pages 5–18
(Mi vtgu423)
|
|
|
|
MATHEMATICS
On odd perfect numbers
R. Z. Ahmadullin Bashkir State Pedagogical University named after M. Akmulla, Ufa, Russian Federation
Abstract:
A perfect number is a natural number equal to the sum of all its proper divisors (all positive divisors other than the number itself). Perfect numbers form a sequence: $6, 28, 496, 8128, 33550336, 8589869056, 137438691328~\dots$
Let $S=p_1^{a_1}\cdot p_2^{a_2}\cdots p_{n-1}^{a_{n-1}}\cdot p_n^{a_n}$ be a perfect number, where $p_i$ are primes, $a_i$ are some natural numbers, $a_i\geqslant 1$, $i=1, \dots, n$, and $n$ is the number of factors of the number $S$. Then
\begin{equation}
\frac{p_1^{1+a_1}-1}{(p_1-1)p_1^{a_1}}\cdot
\frac{p_2^{1+a_2}-1}{(p_2-1)^*p_2^{a_2}}\cdots
\frac{p_n^{1+a_n}-1}{(p_n-1)^*p_n^{a_n}}=2.
\end{equation}
Equation (1) is a Diophantine equation with an indefinite number of unknowns; it contains $2n$
unknowns, the value of $n$ (the number of factors of the number) is not fixed. This equation is
equivalent to the two systems:
\begin{equation}
\left\{\begin{aligned}
p_1=&\frac1{\mathcal{Q}_1-1}\geqslant2, &a_1=\frac{-\ln(\mathcal{Q}_1-p_1(\mathcal{Q}_1-1))}{\ln(p_1)}\geqslant1;\\
& &\dots;\\
p_n=&\frac1{\mathcal{Q}_n-1}\geqslant p(n), & a_n=\frac{-\ln(\mathcal{Q}_n-p_n(\mathcal{Q}_n-1))}{\ln(p_n)}\geqslant1,\\
\end{aligned}\right.
\end{equation}
where
$$
\begin{gathered}
\mathcal{Q}_i=2\frac{(p_1-1)p_1^{a_1}}{p_1^{1+a_1}-1}\cdots
\frac{(p_{i-1}-1)p_{i-1}^{a_{i-1}}}{p_{i-1}^{1+a_{i-1}}-1}\cdot
\frac{(p_{i+1}-1)p_{i+1}^{a_{i+1}}}{p_{i+1}^{1+a_{i+1}}-1}\cdots
\frac{(p_n-1)p_n^{a_n}}{p_n^{1+a_n}-1}=\\
=2\prod_{j=1}^{n\backslash i}\frac{(p_j-1)p_j^{a_j}}{p_j^{1+a_j}-1};\quad i=1,\dots,n,
\end{gathered}
$$
and
\begin{equation}
\left\{\begin{aligned}
\frac{p_1^{1+a_1}-1}{(p_1-1)}=&2^{\delta(a_1,p_1)}\prod_{j=1}^{n\backslash1}p_i^{a^{(1,j)}(a_1,p_1)};\dots;\\
\frac{p_n^{1+a_n}-1}{(p_n-1)}=&2^{\delta(a_n,p_n)}\prod_{j=1}^{n-1}p_i^{a^{(n,j)}(a_n,p_n)};\quad \sum_{j=1}^n a^{(j)}=a_i; \quad i=1,\dots,n,
\end{aligned}
\right.
\end{equation}
where $\delta(a_1,p_1)$ is formally defined as follows:
$$
\delta(a_1,p_1)=
\begin{cases}
0, & \text{ if } p_1=2,\\
0, &\text{ if } p_1\ne2 \text{ and } a_1\text{- even},\\
1, &\text{ if } p_1\ne2 \text{ and } a_1\text{- odd}.
\end{cases}
$$
With allowance for the fact that the factorization of natural numbers is determined uniquely,
the system of equations (5) is a system of $2n$ equations and $2n$ unknowns (not with $(n^2+n)$ unknowns). The numbers $a^{(i,j)}$ are uniquely determined by a factorization function $F(p_1,a_1,i,j)$ and
are considered as parameters.
From the system of equations (2) we obtain the equation
\begin{equation}
a=-\frac{\ln\left(q-\frac1{q-1}(q-1)\right)^{-1}}{\ln\frac1{q-1}}
\end{equation}
at $2>q>1$. This function has an infinite number of (infinite) left discontinuities of the second
kind at the points $q=(l+1)/1$ ($l\in\mathrm{N}$). Hypothetically, beginning from some values of $n$, most of
exponents of $a_n$ in system (2) can be equal only to $1$.
It is proved that for a given (fixed) value $n\geqslant3$ there exists only a finite number of odd perfect
numbers.
Keywords:
odd perfect number, amicable numbers, number theory.
Received: 02.02.2014
Citation:
R. Z. Ahmadullin, “On odd perfect numbers”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 6(32), 5–18
Linking options:
https://www.mathnet.ru/eng/vtgu423 https://www.mathnet.ru/eng/vtgu/y2014/i6/p5
|
Statistics & downloads: |
Abstract page: | 230 | Full-text PDF : | 110 | References: | 31 |
|