Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2014, Number 4(30), Pages 49–56 (Mi vtgu404)  

MATHEMATICS

Abelian groups with UA-ring of endomorphisms and their homogeneous mappings

D. S. Chistyakov

Moscow State Pedagogical University, Moscow, Russian Federation
References:
Abstract: A ring $R$ is said to be a unique addition ring (UA-ring) if a multiplicative semigroup isomorphism $(R,{}^*)\cong(S,{}^*)$ is a ring isomorphism for any ring $S$. Moreover, a semigroup $(R,{}^*)$ is said to be a UA-ring if there exists a unique binary operation $+$ turning $(R,{}^*,+)$ into a ring. An $R$-module $A$ is called an $n$-endomorphal if any $R$-homogeneous mapping from $A^n$ to itself is linear. An $R$-module $A$ is called endomorphal if it is $n$-endomorphal for each positive integer $n$. In this paper, we consider the following classes of Abelian groups: torsion groups, torsion-free separable groups, and some indecomposable torsion-free groups of finite rank. We show that if an Abelian group is an endomorphal module over its endomorphism ring, then this ring is a UA-ring, and vice versa.
Keywords: unique addition ring, homogeneous mapping.
Received: 11.03.2014
Document Type: Article
UDC: 512.541
Language: Russian
Citation: D. S. Chistyakov, “Abelian groups with UA-ring of endomorphisms and their homogeneous mappings”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 4(30), 49–56
Citation in format AMSBIB
\Bibitem{Chi14}
\by D.~S.~Chistyakov
\paper Abelian groups with UA-ring of endomorphisms and their homogeneous mappings
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2014
\issue 4(30)
\pages 49--56
\mathnet{http://mi.mathnet.ru/vtgu404}
Linking options:
  • https://www.mathnet.ru/eng/vtgu404
  • https://www.mathnet.ru/eng/vtgu/y2014/i4/p49
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :65
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024