Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2014, Number 4(30), Pages 14–23 (Mi vtgu400)  

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On a class of reserved devices

V. N. Gubinab, G. G. Pestovb

a Tomsk Polytechnic University, Tomsk, Russian Federation
b Tomsk State University, Tomsk, Russian Federation
Full-text PDF (435 kB) Citations (1)
References:
Abstract: In this paper, we consider three models of redundancy:
  • By use of the mean time between system failures on a finite interval;
  • By use of the mean time between system failures on a infinite interval;
  • By use of the system reliability on a finite interval.
For all three models, the redundancy criterion has the following form:
$$ T(k,r)=\sum_{i=0}^{k-m}C_k^i p^{k-i}q^i T(r-i). \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad{(1)} $$
Using the sigma-operator turns out to be an effective way for proving many properties of optimal strategies. Let $T(r) > 0$ and $T(r)$ increase.
The following properties are proved:
  • If $p\geqslant\frac{k}{2k-m+1}$, then the function $T_m(k,r)$ for the system $S_m$ has at most two maximums for a fixed $r$, it is convex on the interval $m\leqslant k\leqslant k_0^m(r)+1$ and nonincreasing on $k_0^m(r)<k\leqslant r$.
  • Since $T(r+1)/T(r)>1$ and strictly decreases, $\lim\limits_{r\to\infty}T(r+1)/T(r)$ exists by the Bolzano–Weierstrass theorem and this limit is equal to $1$.
From convexity of the function $T(r)$, it is easy to prove that
  • $\frac{T(r+2)}{T(r+1)}<\frac{T(r+1)}{T(r)}$.
Under more restrictive conditions, this inequality was obtained in the thesis of L. V. Ushakova.
  • The function $\ln T(r)$ is convex;
  • $T(k+1,r)-T(k,r)$ increases with an increase in $r$.
To find the optimal strategy, a simplified algorithm is obtained using the properties. This algorithm is based on a modification of the Bellman dynamic programming method mentioned in V. V. Travkina's work. The essence of the algorithm is as follows.
  • If there are $m$ elements, then we have $k_0(m)=m$. For each model, $T(m)$ is calculated.
  • All further calculations for the three models are similar. Then it is necessary to calculate the values of the function $T(r)$ \emphby means of its previous values using the formula
    $$ T(k,r)=\frac{1}{1-p^k}\sum_{i=1}^{k-m}C_k^i p^{k-i}q^i T(r-i), \qquad\qquad\qquad\qquad\qquad\qquad{(2)} $$
  • Suppose that $k_0(m)$, $k_0(m+1)$, …, $k_0(r-1)$, $T(m)$, $T(m+1)$, …, $T(r-1)$ have already calculated.
To find $k_0(r)$, we need to calculate $k_0(r-1)$ and $k_0(r-1)+1$. Then, using (2), we calculate $T(k_0(r-1),r)$ and $T(k_0(r-1),r)$ and compare them. If $T(k_0(r-1),r)\geqslant T(k_0(r-1)+1,r)$ then $k_0 (r) = k_0(r-1)$ and $T(r) = T(k_0 (r-1), r)$. If $T(k_0 (r-1)+1, r) \geqslant T(k_0 (r-1), r)$ then $k_0 (r) = k_0 (r-1)+1$, and $T(r) = T(k_0 (r-1)+1, r)$.
Keywords: redundancy, system, reliability, strategy, mean time between failures, optimization criterion, model, sigma-operator, $K_0$-constancy interval.
Received: 03.06.2014
Document Type: Article
UDC: 519.873
Language: Russian
Citation: V. N. Gubin, G. G. Pestov, “On a class of reserved devices”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 4(30), 14–23
Citation in format AMSBIB
\Bibitem{GubPes14}
\by V.~N.~Gubin, G.~G.~Pestov
\paper On a class of reserved devices
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2014
\issue 4(30)
\pages 14--23
\mathnet{http://mi.mathnet.ru/vtgu400}
Linking options:
  • https://www.mathnet.ru/eng/vtgu400
  • https://www.mathnet.ru/eng/vtgu/y2014/i4/p14
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :41
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024