|
Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2013, Number 6(26), Pages 20–26
(Mi vtgu357)
|
|
|
|
MATHEMATICS
Conformal mapping onto a circular polygon with double simmetry
I. A. Kolesnikov Tomsk State University
Abstract:
A conformal mapping of the unit disk $E=\{\xi\in\boldsymbol C\colon|\xi|<1\}$ onto a circular $2n$-gon, $n\in\boldsymbol N\setminus\{1\}$, with $n$-fold symmetry of rotation relatively to the point $w=0$ and with symmetry relatively to the straight $l=\left\{w\in\boldsymbol C\colon\operatorname{arg}w=\frac\pi n\right\}$ has been obtained in the integral form.
Keywords:
conformal mapping, symmetry of rotation, circular polygon, Schwarz derivative.
Received: 05.10.2013
Citation:
I. A. Kolesnikov, “Conformal mapping onto a circular polygon with double simmetry”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 6(26), 20–26
Linking options:
https://www.mathnet.ru/eng/vtgu357 https://www.mathnet.ru/eng/vtgu/y2013/i6/p20
|
Statistics & downloads: |
Abstract page: | 289 | Full-text PDF : | 108 | References: | 66 | First page: | 1 |
|