Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2013, Number 6(26), Pages 20–26 (Mi vtgu357)  

MATHEMATICS

Conformal mapping onto a circular polygon with double simmetry

I. A. Kolesnikov

Tomsk State University
References:
Abstract: A conformal mapping of the unit disk $E=\{\xi\in\boldsymbol C\colon|\xi|<1\}$ onto a circular $2n$-gon, $n\in\boldsymbol N\setminus\{1\}$, with $n$-fold symmetry of rotation relatively to the point $w=0$ and with symmetry relatively to the straight $l=\left\{w\in\boldsymbol C\colon\operatorname{arg}w=\frac\pi n\right\}$ has been obtained in the integral form.
Keywords: conformal mapping, symmetry of rotation, circular polygon, Schwarz derivative.
Received: 05.10.2013
Document Type: Article
UDC: 517.54
Language: Russian
Citation: I. A. Kolesnikov, “Conformal mapping onto a circular polygon with double simmetry”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 6(26), 20–26
Citation in format AMSBIB
\Bibitem{Kol13}
\by I.~A.~Kolesnikov
\paper Conformal mapping onto a~circular polygon with double simmetry
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2013
\issue 6(26)
\pages 20--26
\mathnet{http://mi.mathnet.ru/vtgu357}
Linking options:
  • https://www.mathnet.ru/eng/vtgu357
  • https://www.mathnet.ru/eng/vtgu/y2013/i6/p20
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:289
    Full-text PDF :108
    References:66
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024