|
Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2013, Number 6(26), Pages 18–19
(Mi vtgu356)
|
|
|
|
MATHEMATICS
On algebraic integers
A. I. Zabarinaa, G. G. Pestovb a Tomsk State Pedagogical University
b Tomsk State University
Abstract:
If $\eta_1,\dots,\eta_n$ are roots of a polynomial of degree $n$ irreducible over the field of rationals with the highest coefficient 1, then the sum$(\eta_1)^k+\dots+(\eta_n)^k$ is an integer for each natural $k$.
Keywords:
integer, algebraic, irreducible.
Received: 16.10.2013
Citation:
A. I. Zabarina, G. G. Pestov, “On algebraic integers”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 6(26), 18–19
Linking options:
https://www.mathnet.ru/eng/vtgu356 https://www.mathnet.ru/eng/vtgu/y2013/i6/p18
|
Statistics & downloads: |
Abstract page: | 162 | Full-text PDF : | 57 | References: | 30 | First page: | 1 |
|