|
Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2013, Number 5(25), Pages 26–29
(Mi vtgu344)
|
|
|
|
MATHEMATICS
Continuity of convex functions
A. V. Polukhina, T. E. Khmyleva Tomsk State University
Abstract:
In this paper, we consider the set $V(K)$ of all convex real-valued functions defined on convex compacts $K\subset\mathbb R^n$ and find conditions under which all functions $f\in V(K)$ are scattered continuous. It is shown that there exist functions $f\in V(K)$ that are not Borel, and, for any ordinal $\alpha<\omega_1$, there are functions $f\in V(K)$ that exactly belong to the $\alpha$th Baire class.
Keywords:
convex function, scattered continuous functions, extreme points, Borel sets, ordinals, compact.
Received: 25.07.2013
Citation:
A. V. Polukhina, T. E. Khmyleva, “Continuity of convex functions”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 5(25), 26–29
Linking options:
https://www.mathnet.ru/eng/vtgu344 https://www.mathnet.ru/eng/vtgu/y2013/i5/p26
|
|