Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2013, Number 3(23), Pages 23–33 (Mi vtgu316)  

MATHEMATICS

Torsion free abelian groups normally determined by their holomorphs

S. Ya. Grinshpona, I. E. Grinshponb

a Tomsk State University
b Tomsk State University of Control Systems and Radioelectronics
References:
Abstract: In this paper, we study homogeneously decomposable into direct sums torsion free abelian groups that are normally determined by their holomorphs. Properties of normal abelian subgroups of holomorphs of torsion free abelian groups are also studied.
Keywords: holomorph, almost holomorphically isomorphic groups, completely decomposable group, homogeneous group, type of a group.
Received: 13.03.2013
Document Type: Article
UDC: 512.541
Language: Russian
Citation: S. Ya. Grinshpon, I. E. Grinshpon, “Torsion free abelian groups normally determined by their holomorphs”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 3(23), 23–33
Citation in format AMSBIB
\Bibitem{GriGri13}
\by S.~Ya.~Grinshpon, I.~E.~Grinshpon
\paper Torsion free abelian groups normally determined by their holomorphs
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2013
\issue 3(23)
\pages 23--33
\mathnet{http://mi.mathnet.ru/vtgu316}
Linking options:
  • https://www.mathnet.ru/eng/vtgu316
  • https://www.mathnet.ru/eng/vtgu/y2013/i3/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:227
    Full-text PDF :64
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024