Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2012, Number 1(17), Pages 16–19 (Mi vtgu235)  

MATHEMATICS

On mutual “orthogonality” of classes of the spaces $C_p(X)$ and $L_p(Y)$

S. P. Gul'ko, V. R. Lazarev, T. E. Khmyleva

Tomsk State University
References:
Abstract: In this article, it is proved that none of the infinitedimensional spaces $C_p(X)$, $L_p(Y)$, or a normed space $E$ can be embedded as a complementable subspace into another by a linear homeomorphism.
Keywords: space of continuous functions, linear homeomorphic embedding, complementable subspace.
Received: 25.12.2011
Document Type: Article
UDC: 515.12
Language: Russian
Citation: S. P. Gul'ko, V. R. Lazarev, T. E. Khmyleva, “On mutual “orthogonality” of classes of the spaces $C_p(X)$ and $L_p(Y)$”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 1(17), 16–19
Citation in format AMSBIB
\Bibitem{GulLazKhm12}
\by S.~P.~Gul'ko, V.~R.~Lazarev, T.~E.~Khmyleva
\paper On mutual ``orthogonality'' of classes of the spaces $C_p(X)$ and~$L_p(Y)$
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2012
\issue 1(17)
\pages 16--19
\mathnet{http://mi.mathnet.ru/vtgu235}
Linking options:
  • https://www.mathnet.ru/eng/vtgu235
  • https://www.mathnet.ru/eng/vtgu/y2012/i1/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024