Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2024, Number 87, Pages 44–58
DOI: https://doi.org/10.17223/19988621/87/5
(Mi vtgu1055)
 

MECHANICS

Modeling of elasto-plastic fracture of a compact specimen

N. S. Astapov, V. D. Kurguzov

Lavrentyev Institute of Hydrodynamics of the Siberian Branch of RAS, Novosibirsk, Russian Federation
References:
Abstract: The strength of a compact specimen under normal fracture (fracture mode I) is studied within the framework of the Neuber-Novozhilov approach. A model of an ideal elasto-plastic material with limiting relative elongation is chosen as the model of the deformable solid. This class of materials includes low-alloy steels that are used in structures operating at temperatures below the cold brittleness threshold. The crack propagation criterion is formulated using the modified Leonov-Panasyuk-Dugdale model, which uses an additional parameter, i.e., the diameter of the plasticity zone (the width of the prefracture zone). In the case of stress field singularity occurring in the vicinity of the crack tip, a two-parameter (coupled) criterion for quasi-brittle fracture is developed for type I cracks in an elastoplastic material. The coupled fracture criterion includes the deformation criterion attributed to the crack tip and the force criterion attributed to the model crack tip. The lengths of the original and model cracks differ by the length of the prefracture zone. Diagrams of the quasi-brittle fracture of the specimen under plane strain and plane stress conditions are constructed. The constitutive equations of the analytical model are analyzed in terms of the characteristic linear dimension of the material structure. Simple formulas applicable to verification calculations of the critical fracture load and pre-fracture zone length for quasi-brittle and quasi-ductile fractures are obtained. The parameters in the presented model of quasi-brittle fracture are analyzed. It is proposed to select the parameters of the model according to the approximation of the uniaxial tension diagram and the critical stress intensity factor.
Keywords: brittle fracture, quasi-brittle fracture, quasi-ductile fracture, two-parameter fracture criterion, elasto-plastic material, ultimate strain.
Received: 09.06.2022
Accepted: February 12, 2024
Document Type: Article
UDC: 539.3
Language: Russian
Citation: N. S. Astapov, V. D. Kurguzov, “Modeling of elasto-plastic fracture of a compact specimen”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 87, 44–58
Citation in format AMSBIB
\Bibitem{AstKur24}
\by N.~S.~Astapov, V.~D.~Kurguzov
\paper Modeling of elasto-plastic fracture of a compact specimen
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2024
\issue 87
\pages 44--58
\mathnet{http://mi.mathnet.ru/vtgu1055}
\crossref{https://doi.org/10.17223/19988621/87/5}
Linking options:
  • https://www.mathnet.ru/eng/vtgu1055
  • https://www.mathnet.ru/eng/vtgu/y2024/i87/p44
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:39
    Full-text PDF :29
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024