Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2023, Number 86, Pages 159–166
DOI: https://doi.org/10.17223/19988621/86/12
(Mi vtgu1048)
 

MATHEMATICS

On a class of homeomorphisms of function spaces preserving the Lindelöf number of domains

V. R. Lazarev

Tomsk State University, Tomsk, Russian Federation
References:
Abstract: We consider the class of all homeomorphisms between the function spaces of the form $C_p(X)$, $C_p(Y)$ such that the images of $Y$ and $X$ under their dual and, respectively, inverse dual mappings consist of finitely supported functionals. We prove that if a homeomorphism belongs to this class, then Lindelöf numbers $l(X)$ and $l(Y)$ are equal. This result generalizes the known theorem of A. Bouziad for linear homeomorphisms of function spaces.
Keywords: Lindelöf number, function space, pointwise convergence topology, finite support property.
Received: 19.12.2022
Accepted: December 4, 2023
Document Type: Article
UDC: 515.12
MSC: 54C35
Language: English
Citation: V. R. Lazarev, “On a class of homeomorphisms of function spaces preserving the Lindelöf number of domains”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 86, 159–166
Citation in format AMSBIB
\Bibitem{Laz23}
\by V.~R.~Lazarev
\paper On a class of homeomorphisms of function spaces preserving the Lindel\"of number of domains
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2023
\issue 86
\pages 159--166
\mathnet{http://mi.mathnet.ru/vtgu1048}
\crossref{https://doi.org/10.17223/19988621/86/12}
Linking options:
  • https://www.mathnet.ru/eng/vtgu1048
  • https://www.mathnet.ru/eng/vtgu/y2023/i86/p159
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:40
    Full-text PDF :36
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024