Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2023, Number 85, Pages 22–31
DOI: https://doi.org/10.17223/19988621/85/2
(Mi vtgu1026)
 

MATHEMATICS

Super-efficient robust estimation in Lévy continuous time regression models from discrete data

N. I. Nikiforova, S. M. Pergamenshchikovba, E. A. Pchelintseva

a Tomsk State University, Tomsk, Russia
b University of Rouen Normandy, Saint-Etienne-du Rouvray, France
References:
Abstract: In this paper we consider the nonparametric estimation problem for a continuous time regression model with non-Gaussian Lévy noise of small intensity. The estimation problem is studied under the condition that the observations are accessible only at discrete time moments. In this paper, based on the nonparametric estimation method, a new estimation procedure is constructed, for which it is shown that the rate of convergence, up to a certain logarithmic coefficient, is equal to the parametric one, i.e., super-efficient property is provided. Moreover, in this case, the Pinsker constant for the Sobolev ellipse with the geometrically increasing coefficients is calculated, which turns out to be the same as for the case of complete observations.
Keywords: nonparametric estimation, non-Gaussian regression models in continuous time, robust estimation, efficient estimation, Pinsker constant, super-efficient estimation.
Funding agency Grant number
Russian Science Foundation 22-21-00302
The research was carried out with the financial support of the RSF as part of a scientific project № 22-21-00302.
Received: 05.08.2023
Accepted: October 10, 2023
Document Type: Article
UDC: 519.22
MSC: 62G05, 62G20
Language: English
Citation: N. I. Nikiforov, S. M. Pergamenshchikov, E. A. Pchelintsev, “Super-efficient robust estimation in Lévy continuous time regression models from discrete data”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 85, 22–31
Citation in format AMSBIB
\Bibitem{NikPerPch23}
\by N.~I.~Nikiforov, S.~M.~Pergamenshchikov, E.~A.~Pchelintsev
\paper Super-efficient robust estimation in L\'evy continuous time regression models from discrete data
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2023
\issue 85
\pages 22--31
\mathnet{http://mi.mathnet.ru/vtgu1026}
\crossref{https://doi.org/10.17223/19988621/85/2}
Linking options:
  • https://www.mathnet.ru/eng/vtgu1026
  • https://www.mathnet.ru/eng/vtgu/y2023/i85/p22
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:53
    Full-text PDF :45
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024