Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2023, Number 83, Pages 166–179
DOI: https://doi.org/10.17223/19988621/83/14
(Mi vtgu1011)
 

MECHANICS

Unsteady motions of spherical shells in a viscoelastic medium

I. I. Safarova, M. Kh. Teshaevb

a Tashkent Institute of Chemical Technology, Tashkent, Uzbekistan
b Bukhara Branch of the Institute of Mathematics of the Academy of Sciences of Uzbekistan, Bukhara, Uzbekistan
References:
Abstract: This paper considers the unsteady motions of the spherical bodies immersed in a viscoelastic medium under the action of unsteady waves. The relation between stresses and strains complies with the hereditary Boltzmann–Voltaire integral. Using the integral Laplace transform, an exact solution of the equations of motion is obtained in the images. The integrand function in the images satisfies Jordan's lemma. Using the residue theorem, displacements and stresses are determined as the functions of time. An algorithm is developed, and a program is compiled in C++. The numerical results are obtained and analyzed. It is revealed that the kinematic factors, i.e. acceleration and velocity, of the spherical shell differ significantly from those of the viscoelastic medium. Under short-term exposure to waves (loads), the diagram of the stress-strain state changes: at all points of the shell, the maximum stresses and strains are significantly higher than average values, and the stress attains the maximum at the frontal point. Some differences are also found in the variation of time-displacement dependence for the spherical shell and surrounding viscoelastic medium.
Keywords: shell, viscoelastic medium, unsteady wave, Laplace transform, stress, strain.
Received: 03.05.2022
Accepted: June 1, 2023
Document Type: Article
UDC: 539.2
Language: Russian
Citation: I. I. Safarov, M. Kh. Teshaev, “Unsteady motions of spherical shells in a viscoelastic medium”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 83, 166–179
Citation in format AMSBIB
\Bibitem{SafTes23}
\by I.~I.~Safarov, M.~Kh.~Teshaev
\paper Unsteady motions of spherical shells in a viscoelastic medium
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2023
\issue 83
\pages 166--179
\mathnet{http://mi.mathnet.ru/vtgu1011}
\crossref{https://doi.org/10.17223/19988621/83/14}
Linking options:
  • https://www.mathnet.ru/eng/vtgu1011
  • https://www.mathnet.ru/eng/vtgu/y2023/i83/p166
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024