Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2023, Number 83, Pages 52–58
DOI: https://doi.org/10.17223/19988621/83/5
(Mi vtgu1002)
 

MATHEMATICS

On the boundedness of the integral convolution operator in a pair of classical Lebesgue spaces $L_p$ and $L_r$

E. A. Pavlova, A. I. Furmenkob

a The Crimean State Engineering Pedagogical University, Simferopol, Russian Federation
b N.E. Zhukovsky and Y.A. Gagarin Air Force Academy, Voronezh, Russian Federation
References:
Abstract: In terms of the kernel of an integral convolution operator, a constructive criterion for its boundedness in a pair of classical Lebesgue spaces $L_p$ and $L_r$ is obtained. It is shown that in order for the integral convolution operator to act boundedly from $L_p$ to $L_{r,p}$, it is necessary and sufficient that the kernel $K(t)$ of the operator belonged to the Marcinkiewicz space $M_{t^{1-1/q}}$.
Keywords: integral convolution operator, boundedness, boundedness criterion, Lebesgue spaces
Received: 03.12.2022
Accepted: June 1, 2023
Document Type: Article
UDC: 517.983.23
MSC: 46B
Language: Russian
Citation: E. A. Pavlov, A. I. Furmenko, “On the boundedness of the integral convolution operator in a pair of classical Lebesgue spaces $L_p$ and $L_r$”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 83, 52–58
Citation in format AMSBIB
\Bibitem{PavFur23}
\by E.~A.~Pavlov, A.~I.~Furmenko
\paper On the boundedness of the integral convolution operator in a pair of classical Lebesgue spaces $L_p$ and $L_r$
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2023
\issue 83
\pages 52--58
\mathnet{http://mi.mathnet.ru/vtgu1002}
\crossref{https://doi.org/10.17223/19988621/83/5}
Linking options:
  • https://www.mathnet.ru/eng/vtgu1002
  • https://www.mathnet.ru/eng/vtgu/y2023/i83/p52
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024