Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2023, Number 83, Pages 24–30
DOI: https://doi.org/10.17223/19988621/83/3
(Mi vtgu1000)
 

MATHEMATICS

On the box dimension of subsets of a metric compact space

A. V. Ivanov

Institute of Applied Mathematics of the Karelian Scientific Center of Russian Academy of Sciences, Petrozavodsk, Russian Federation
References:
Abstract: The question of possible values of the lower capacity dimension $\underline{\mathrm{dim}}_B$ of subsets of the metric compact set $X$ is considered. The concept of dimension $f\underline{\mathrm{dim}}_BX$ is introduced, which characterizes the asymptotics of the lower capacity dimension of closed $\varepsilon$-neighborhoods of finite subsets of the compact set $X$ for $\varepsilon\to0$. For a wide class of metric compact sets, the dimension $f\underline{\mathrm{dim}}_BX$ is the same as $\underline{\mathrm{dim}}_BX$. The following theorem is proved: for any non-negative number $r<f\underline{\mathrm{dim}}_BX$ there exists a closed subset $Z_r\subset X$ such that $\underline{\mathrm{dim}}_BZ_r=r$.
Keywords: metric compact space, capacitarian dimension, quantization dimension, intermediate value theorem for the capacitarian dimension.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation
The study was carried out under state order to the Karelian Research Centre of the Russian Academy of Sciences (Institute of Applied Mathematical Research KarRC RAS).
Received: 18.11.2022
Accepted: June 1, 2023
Document Type: Article
UDC: 515.12
MSC: Primary 54F45; Secondary 54E45
Language: Russian
Citation: A. V. Ivanov, “On the box dimension of subsets of a metric compact space”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 83, 24–30
Citation in format AMSBIB
\Bibitem{Iva23}
\by A.~V.~Ivanov
\paper On the box dimension of subsets of a metric compact space
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2023
\issue 83
\pages 24--30
\mathnet{http://mi.mathnet.ru/vtgu1000}
\crossref{https://doi.org/10.17223/19988621/83/3}
Linking options:
  • https://www.mathnet.ru/eng/vtgu1000
  • https://www.mathnet.ru/eng/vtgu/y2023/i83/p24
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:31
    Full-text PDF :38
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024