Tambov University Reports. Series: Natural and Technical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Russian Universities Reports. Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tambov University Reports. Series: Natural and Technical Sciences, 2018, Volume 23, Issue 122, Pages 131–135
DOI: https://doi.org/10.20310/1810-0198-2018-23-122-131-135
(Mi vtamu62)
 

Scientific articles

Existence and stability of bumps in a neural field model

K. Kolodinaa, A. Oleynikb, J. Wyllera

a Norwegian University of Life Sciences
b University of Bergen
References:
Abstract: We investigate existence and stability of bumps (localized stationary solutions) in a homogenized 2-population neural field model, when the firing rate functions are given by the unit step function.
Keywords: homogenization theory, existence and stability of stationary solutions of nonlocal neural field models.
Funding agency Grant number
Research Council of Norway 239070
The work is partially supported by the Norwegian University of Life Sciences and The Research Council of Norway (project № 239070).
Received: 23.03.2018
Bibliographic databases:
Document Type: Article
UDC: 51-76
Language: English
Citation: K. Kolodina, A. Oleynik, J. Wyller, “Existence and stability of bumps in a neural field model”, Tambov University Reports. Series: Natural and Technical Sciences, 23:122 (2018), 131–135
Citation in format AMSBIB
\Bibitem{KolOleWyl18}
\by K.~Kolodina, A.~Oleynik, J.~Wyller
\paper Existence and stability of bumps in a neural field model
\jour Tambov University Reports. Series: Natural and Technical Sciences
\yr 2018
\vol 23
\issue 122
\pages 131--135
\mathnet{http://mi.mathnet.ru/vtamu62}
\crossref{https://doi.org/10.20310/1810-0198-2018-23-122-131-135}
\elib{https://elibrary.ru/item.asp?id=35213519}
Linking options:
  • https://www.mathnet.ru/eng/vtamu62
  • https://www.mathnet.ru/eng/vtamu/v23/i122/p131
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Universities Reports. Mathematics
    Statistics & downloads:
    Abstract page:56
    Full-text PDF :29
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024