Russian Universities Reports. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Russian Universities Reports. Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Universities Reports. Mathematics, 2024, Volume 29, Issue 147, Pages 244–254
DOI: https://doi.org/10.20310/2686-9667-2024-29-147-244-254
(Mi vtamu327)
 

Scientific articles

Optimal estimates of the number of links of basis horizontal broken lines for 2-step Carnot groups with horizontal distribution of corank 1

A. V. Greshnov, R. I. Zhukov

Novosibirsk State University
References:
Abstract: For a 2-step Carnot group $\Bbb D_n,$ $\dim\Bbb D_n=n+1,$ with horizontal distribution of corank 1, we proved that the minimal number $N_{\mathcal{X}_{\Bbb D_n}}$ such that any two points $u,v\in\Bbb D_n$ can be joined by some basis horizontal $k$-broken line (i.e. a broken line consisting of $k$ links) $L^{\mathcal{X}_{\Bbb D_n}}_k(u,v),$ $k\leq N_{\mathcal{X}_{\Bbb D_n}},$ does not exeed $n+2.$ The examples of $\Bbb D_n$ such that $N_{\mathcal{X}_{\Bbb D_n}}=n+i,$ $i=1,2,$ were found. Here $\mathcal{X}_{\Bbb D_n}=\{X_1,\ldots,X_n\}$ is the set of left invariant basis horizontal vector fields of the Lie algebra of the group $\Bbb D_n,$ and every link of $L^{\mathcal{X}_{\Bbb D_n}}_k(u,v)$ has the form $\exp(asX_i)(w),$ $s\in[0,s_0],$ $a=const.$
Keywords: horizontal curves, broken lines, Rashevskii–Chow theorem, $2$-step Carnot groups, basis vector fields
Funding agency Grant number
Russian Science Foundation 24-21-00319
The research was supported by the Russian Science Foundation (project no. 24-21-00319, https://rscf.ru/project/24-21-00319/).
Received: 05.02.2024
Accepted: 13.09.2024
Document Type: Article
UDC: 517.518
MSC: 53C17, 43A80
Language: Russian
Citation: A. V. Greshnov, R. I. Zhukov, “Optimal estimates of the number of links of basis horizontal broken lines for 2-step Carnot groups with horizontal distribution of corank 1”, Russian Universities Reports. Mathematics, 29:147 (2024), 244–254
Citation in format AMSBIB
\Bibitem{GreZhu24}
\by A.~V.~Greshnov, R.~I.~Zhukov
\paper Optimal estimates of the number of links of basis horizontal broken lines for 2-step Carnot groups with horizontal distribution of corank 1
\jour Russian Universities Reports. Mathematics
\yr 2024
\vol 29
\issue 147
\pages 244--254
\mathnet{http://mi.mathnet.ru/vtamu327}
\crossref{https://doi.org/10.20310/2686-9667-2024-29-147-244-254}
Linking options:
  • https://www.mathnet.ru/eng/vtamu327
  • https://www.mathnet.ru/eng/vtamu/v29/i147/p244
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Universities Reports. Mathematics
    Statistics & downloads:
    Abstract page:11
    Full-text PDF :3
    References:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024