Russian Universities Reports. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Russian Universities Reports. Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Universities Reports. Mathematics, 2024, Volume 29, Issue 146, Pages 218–228
DOI: https://doi.org/10.20310/2686-9667-2024-29-146-218-228
(Mi vtamu325)
 

Scientific articles

Methods for constructing invariant cubature formulasfor integrals over the surface of a torus in ${\mathbb R}^3$

I. M. Fedotova, M. I. Medvedeva, A. S. Katsunova

Siberian Federal University
References:
Abstract: The article considers the question of constructing cubature formulas for the surface of a torus $T$ in ${\mathbb R}^3$, invariant under the group $G$ generated by reflections of $T$ into itself. For currently known invariant cubature formulas with a degree of accuracy greater than $3$, the number of nodes significantly exceeds the minimum possible. The article proposes invariant cubature formulas of degree $5$ and $7$ for the surface of a torus with a number of nodes close to the minimum. Tables of values of nodes and coefficients of the constructed cubature formulas are given. The dependence of these values on the ratio of the radii of the guide and generatrix of the torus circles is studied. For construction, the method of invariant cubature formulas is used, based on the theorem of S. L. Sobolev.
Keywords: cubature formulas, torus, invariant polynomials, group of torus to self transformations
Received: 27.03.2024
Accepted: 07.06.2024
Document Type: Article
UDC: 519.6
MSC: 65D32
Language: Russian
Citation: I. M. Fedotova, M. I. Medvedeva, A. S. Katsunova, “Methods for constructing invariant cubature formulasfor integrals over the surface of a torus in ${\mathbb R}^3$”, Russian Universities Reports. Mathematics, 29:146 (2024), 218–228
Citation in format AMSBIB
\Bibitem{FedMedKat24}
\by I.~M.~Fedotova, M.~I.~Medvedeva, A.~S.~Katsunova
\paper Methods for constructing invariant cubature formulas\\ for integrals over the surface of a torus in ${\mathbb R}^3$
\jour Russian Universities Reports. Mathematics
\yr 2024
\vol 29
\issue 146
\pages 218--228
\mathnet{http://mi.mathnet.ru/vtamu325}
\crossref{https://doi.org/10.20310/2686-9667-2024-29-146-218-228}
Linking options:
  • https://www.mathnet.ru/eng/vtamu325
  • https://www.mathnet.ru/eng/vtamu/v29/i146/p218
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Universities Reports. Mathematics
    Statistics & downloads:
    Abstract page:42
    Full-text PDF :22
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024