Russian Universities Reports. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Russian Universities Reports. Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Universities Reports. Mathematics, 2024, Volume 29, Issue 146, Pages 125–137
DOI: https://doi.org/10.20310/2686-9667-2024-29-146-125-137
(Mi vtamu318)
 

Scientific articles

On the harmonicity of a function with a Bôcher–Koebe type condition

N. P. Volchkovaa, V. V. Volchkovb

a Donetsk National Technical University
b Donetsk State University
References:
Abstract: Let $B_R$ be an open ball of radius $R$ in $\mathbb{R}^n$ with the center at zero, $B_{0,R}=B_R\backslash \{0\},$ and a function $f$ be harmonic in $B_{0,R}.$ If $f$ has zero residue at the point $x=0,$ then the flow of its gradient through any sphere lying in $B_{0,R}$ is zero. In this paper, the reverse phenomenon is studied for the case when only spheres of one or two fixed radii $r_1$ и $r_2$ are allowed. A description of the class
\begin{equation*} \mathfrak{H}_r(B_{0,R})=\bigg\{f\in C^{\infty}(B_{0,R}): \int_{S_{r}(x)} \frac{\partial f}{\partial \mathbf{n}}\, d\omega =0\quad \forall x\in B_{R-r}\backslash S_{r}\bigg\} \end{equation*}
was found, where $r\in (0,R/2),$ $S_r(x)=\{y\in \mathbb{R}^n: |y-x|=r\},$ $S_r=S_r(0).$ It is proved that if $r_1/r_2$ is not a ratio of the zeros of the Bessel function $J_{n/2}$ and $f\in(\mathfrak{H}_{r_1}\cap\mathfrak{H}_{r_2})(B_{0,R}),$ then the function $f$ is harmonic in $B_{0,R}$ and ${\mathrm{Res}}\, (f,0)=0.$ This result cannot be significantly improved. Namely, if $r_1/r_2 =\alpha/\beta,$ where $J_{n/2}(\alpha)=J_{n/2}(\beta)=0,$ or $R< r_1+r_2,$ then there exists a function $f\in C^{\infty}(B_{R})$ non-harmonic in $B_{0,R}$ and such that
\begin{equation*} \int_{S_{r_j}(x)} \frac{\partial f}{\partial \mathbf{n}}\, d\omega =0,\quad x\in B_{R-r_j},\quad j\in \{1;2\}. \end{equation*}
In addition, the condition $f\in C^{\infty}(B_{0,R})$ cannot be replaced, generally speaking, by the requirement $f\in C^{s}(B_{R})$ for an arbitrary fixed $s\in \mathbb{N}.$
Keywords: harmonic functions, Bôcher–Koebe condition, spherical harmonics, Pompeiu sets
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 124012400352-6
The research was conducted on the topic of the state task (registration number 124012400352-6).
Received: 16.01.2024
Accepted: 07.06.2024
Document Type: Article
UDC: 517.5
MSC: 31B05, 33C10, 33C55
Language: Russian
Citation: N. P. Volchkova, V. V. Volchkov, “On the harmonicity of a function with a Bôcher–Koebe type condition”, Russian Universities Reports. Mathematics, 29:146 (2024), 125–137
Citation in format AMSBIB
\Bibitem{VolVol24}
\by N.~P.~Volchkova, V.~V.~Volchkov
\paper On the harmonicity of a function with a B\^{o}cher--Koebe type condition
\jour Russian Universities Reports. Mathematics
\yr 2024
\vol 29
\issue 146
\pages 125--137
\mathnet{http://mi.mathnet.ru/vtamu318}
\crossref{https://doi.org/10.20310/2686-9667-2024-29-146-125-137}
Linking options:
  • https://www.mathnet.ru/eng/vtamu318
  • https://www.mathnet.ru/eng/vtamu/v29/i146/p125
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Universities Reports. Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024