Russian Universities Reports. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Russian Universities Reports. Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Universities Reports. Mathematics, 2023, Volume 28, Issue 142, Pages 155–168
DOI: https://doi.org/10.20310/2686-9667-2023-28-142-155-168
(Mi vtamu286)
 

Scientific articles

Hermite functions and inner product in Sobolev space

M. A. Boudref

University of Bouira
References:
Abstract: Let us consider the orthogonal Hermite system $\left\{ \varphi_{2n}(x)\right\} _{n\geq 0}$ of even index defined on $\left( -\infty,\infty \right),$ where
\begin{equation*} \varphi _{2n}(x)=\frac{e^{-\frac{x^{2}}{2}}}{\sqrt{\left( 2n\right) !}\pi ^{\frac{1}{4}}2^{n}}H_{2n}(x), \end{equation*}
by $H_{2n}(x)$ we denote a Hermite polynomial of degree $2n.$ In this paper, we consider a generalized system $\left\{ \psi_{r,2n}(x)\right\} $ with $r>0,$ $n\geq 0$ which is orthogonal with respect to the Sobolev type inner product on $\left(-\infty ,\infty \right),$ i.e.
\begin{equation*} \langle f,g \rangle =\lim_{t\rightarrow -\infty }\sum_{k=0}^{r-1}f^{\left(k\right) }(t)g^{\left( k\right) }(t)+\int_{-\infty }^{\infty }f^{\left(r\right) }(x)g^{\left( r\right) }(x)\rho (x)dx \end{equation*}
with $\rho (x)=e^{-x^{2}},$ and generated by $\left\{\varphi_{2n}(x)\right\}_{n\geq 0}.$ The main goal of this work is to study some properties related to the system $\left\{ \psi_{r,2n}(x)\right\}_{n\geq 0},$
\begin{gather*} \psi _{r,n}(x)=\frac{(x-a)^{n}}{n!},\quad n=0,1,2,\ldots,r-1, \\[2pt] \psi _{r,r+n}(x)=\frac{1}{(r-1)!}\int_{a}^{b}(x-t)^{r-1}\varphi _{n}(t)dt, \quad n=0,1,2,\ldots\, . \end{gather*}
We study the conditions on a function $f(x),$ given in a generalized Hermite orthogonal system, for it to be expandable into a generalized mixed Fourier series as well as the convergence of this Fourier series. The second result of the paper is the proof of a recurrent formula for the system $\left\{ \psi _{r,2n}(x)\right\} _{n\geq 0}.$ We also discuss the asymptotic properties of these functions, and this concludes our contribution.
Keywords: inner product, Sobolev space, Hermite polynomials.
Received: 08.02.2023
Accepted: 09.06.2023
Document Type: Article
UDC: 517.518.36
MSC: 42C10
Language: English
Citation: M. A. Boudref, “Hermite functions and inner product in Sobolev space”, Russian Universities Reports. Mathematics, 28:142 (2023), 155–168
Citation in format AMSBIB
\Bibitem{Bou23}
\by M.~A.~Boudref
\paper Hermite functions and inner product in Sobolev space
\jour Russian Universities Reports. Mathematics
\yr 2023
\vol 28
\issue 142
\pages 155--168
\mathnet{http://mi.mathnet.ru/vtamu286}
\crossref{https://doi.org/10.20310/2686-9667-2023-28-142-155-168}
Linking options:
  • https://www.mathnet.ru/eng/vtamu286
  • https://www.mathnet.ru/eng/vtamu/v28/i142/p155
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Universities Reports. Mathematics
    Statistics & downloads:
    Abstract page:109
    Full-text PDF :56
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024