Russian Universities Reports. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Russian Universities Reports. Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Universities Reports. Mathematics, 2021, Volume 26, Issue 136, Pages 382–393
DOI: https://doi.org/10.20310/2686-9667-2021-26-136-382-393
(Mi vtamu239)
 

Scientific articles

On a necessary and sufficient condition for the negativeness of the Green’s function of a two-point boundary value problem for a functional differential equation

S. M. Labovski

Plekhanov Russian University of Economics
References:
Abstract: Conditions of negativity for the Green's function of a two-point boundary value problem
$$ \mathcal{L}_\lambda u := u^{(n)}-\lambda\int_0^l u(s) d_s r(x,s)=f(x), \ \ \ x\in[0,l], \ \ \ B^k(u)=\alpha, $$
where $B^k(u)=(u(0),\ldots,u^{(n-k-1)}(0),u(l),-u'(l),\ldots,(-1)^{(k-1)}u^{(k-1)}(0)),$ $n\ge3,$ $0\!<\!k\!<\!n,$ $k$ is odd, are considered. The function $r(x,s)$ is assumed to be non-decreasing in the second argument. A necessary and sufficient condition for the nonnegativity of the solution of this boundary value problem on the set $E$ of functions satisfying the conditions
$$ u(0)=\cdots=u^{(n-k-2)}(0)=0, \ \ \ u(l)=\cdots=u^{(k-2)}(l)=0, $$
$u^{(n-k-1)}(0)\ge0,$ $u^{(k-1)}(l)\ge0,$ $f(x)\le 0$ is obtained. This condition lies in the subcriticality of boundary value problems with vector functionals $B^{k-1}$ and $B^{k+1}.$ Let $k$ be even and $\lambda^k$ be the smallest positive value of $\lambda$ for which the problem $\mathcal{L}_\lambda u=0,$ $B^ku=0$ has a nontrivial solution. Then the pair of conditions $\lambda <\lambda^{k-1}$ and $\lambda <\lambda^{k+1}$ is necessary and sufficient for positivity of the solution of the problem.
Keywords: Green's function, positivity, functional differential equation.
Received: 15.06.2021
Document Type: Article
UDC: 517.929, 517.927.6
MSC: 34B05, 34B27, 34K10
Language: Russian
Citation: S. M. Labovski, “On a necessary and sufficient condition for the negativeness of the Green’s function of a two-point boundary value problem for a functional differential equation”, Russian Universities Reports. Mathematics, 26:136 (2021), 382–393
Citation in format AMSBIB
\Bibitem{Lab21}
\by S.~M.~Labovski
\paper On a necessary and sufficient condition for the negativeness of the Green’s function of a two-point boundary value problem for a functional differential equation
\jour Russian Universities Reports. Mathematics
\yr 2021
\vol 26
\issue 136
\pages 382--393
\mathnet{http://mi.mathnet.ru/vtamu239}
\crossref{https://doi.org/10.20310/2686-9667-2021-26-136-382-393}
Linking options:
  • https://www.mathnet.ru/eng/vtamu239
  • https://www.mathnet.ru/eng/vtamu/v26/i136/p382
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Universities Reports. Mathematics
    Statistics & downloads:
    Abstract page:97
    Full-text PDF :37
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024