Abstract:
Let X be a space with ∞-metric ρ (with possibly infinite value) and Y a space with ∞-distance d satisfying the identity axiom. We consider the problem of the coincidence point for the mappings F,G:X→Y of the existence of the solution for the equation
F(x)=G(x). We provide conditions of the existence of the coincidence points in terms of the covering set for the mapping F and the Lipschitz set for the mapping G in the space X×Y. The α-covering set
(α>0) of the mapping F — is the set of such (x,y), that
∃u∈XF(u)=y,ρ(x,u)≤α−1d(F(x),y),ρ(x,u)<∞,
and the β- Lipschitz set (β≥0) for the mapping G — is the set of such (x,y), that
∀u∈XG(u)=y⇒d(y,G(x))≤βρ(u,x).
The new results are compared with the known theorems about the coincidence points.
Keywords:
coincidence point of two mappings, metric, distance, covering mapping.
Funding agency
Grant number
The work is partially supported by the UEM-SIDA 2017-2022 (Subprogramme № 1.4.2: Capacity Building in Mathematics, Statistics and Its Applications).
Received: 23.12.2019
Document Type:
Article
UDC:517.988.6, 515.124.2
Language: Russian
Citation:
T. V. Zhukovskaya, W. Merchela, A. I. Shindyapin, “On coincidence points of mappings in generalized metric spaces”, Russian Universities Reports. Mathematics, 25:129 (2020), 18–24
\Bibitem{ZhuMerShi20}
\by T.~V.~Zhukovskaya, W.~Merchela, A.~I.~Shindyapin
\paper On coincidence points of mappings in generalized metric spaces
\jour Russian Universities Reports. Mathematics
\yr 2020
\vol 25
\issue 129
\pages 18--24
\mathnet{http://mi.mathnet.ru/vtamu167}
\crossref{https://doi.org/10.20310/2686-9667-2020-25-129-18-24}
Linking options:
https://www.mathnet.ru/eng/vtamu167
https://www.mathnet.ru/eng/vtamu/v25/i129/p18
This publication is cited in the following 6 articles:
E. A. Panasenko, “On Operator Inclusions in Spaces with Vector-Valued Metrics”, Proc. Steklov Inst. Math. (Suppl.), 323:1 (2023), S222–S242
E. S. Zhukovskiy, “A Note on Generalized Contraction Theorems”, Math. Notes, 111:2 (2022), 211–216
V. Merchela, “Vklyucheniya s otobrazheniyami, deistvuyuschimi iz metricheskogo prostranstva v prostranstvo s rasstoyaniem”, Vestnik rossiiskikh universitetov. Matematika, 27:137 (2022), 27–36
T. V. Zhukovskaya, W. Merchela, “On stability and continuous dependence on parameter of the set of coincidence points of two mappings acting in a space with a distance”, Russian Universities Reports. Mathematics, 27:139 (2022), 247–260
E. S. Zhukovskii, “O probleme suschestvovaniya nepodvizhnoi tochki obobschenno szhimayuschego mnogoznachnogo otobrazheniya”, Vestnik rossiiskikh universitetov. Matematika, 26:136 (2021), 372–381
T. V. Zhukovskaya, E. S. Zhukovskii, I. D. Serova, “Nekotorye voprosy analiza otobrazhenii metricheskikh i chastichno uporyadochennykh prostranstv”, Vestnik rossiiskikh universitetov. Matematika, 25:132 (2020), 345–358