Loading [MathJax]/jax/output/SVG/config.js
Russian Universities Reports. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Russian Universities Reports. Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Universities Reports. Mathematics, 2019, Volume 24, Issue 126, Pages 218–234
DOI: https://doi.org/10.20310/1810-0198-2019-24-126-218-234
(Mi vtamu149)
 

Scientific articles

A class of strongly stable approximation for unbounded operators

A. Khellafa, S. Benarabb, H. Guebbaia, W. Merchelab

a Université 8 Mai 1945
b Derzhavin Tambov State University
References:
Abstract: We derive new sufficient conditions to solve the spectral pollution problem by using the generalized spectrum method. This problem arises in the spectral approximation when the approximate matrix may possess eigenvalues which are unrelated to any spectral properties of the original unbounded operator. We develop the theoretical background of the generalized spectrum method as well as illustrate its effectiveness with the spectral pollution. As a numerical application, we will treat the Schrödinger's operator where the discretization process based upon the Kantorovich's projection.
Keywords: eigenvalue approximation, spectral pollution, generalized spectrum approximation, Schrödinger operator.
Received: 15.02.2019
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: A. Khellaf, S. Benarab, H. Guebbai, W. Merchela, “A class of strongly stable approximation for unbounded operators”, Russian Universities Reports. Mathematics, 24:126 (2019), 218–234
Citation in format AMSBIB
\Bibitem{KheBenGue19}
\by A.~Khellaf, S.~Benarab, H.~Guebbai, W.~Merchela
\paper A class of strongly stable approximation for unbounded operators
\jour Russian Universities Reports. Mathematics
\yr 2019
\vol 24
\issue 126
\pages 218--234
\mathnet{http://mi.mathnet.ru/vtamu149}
\crossref{https://doi.org/10.20310/1810-0198-2019-24-126-218-234}
\elib{https://elibrary.ru/item.asp?id=38253926}
Linking options:
  • https://www.mathnet.ru/eng/vtamu149
  • https://www.mathnet.ru/eng/vtamu/v24/i126/p218
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Universities Reports. Mathematics
    Statistics & downloads:
    Abstract page:128
    Full-text PDF :74
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025