Russian Universities Reports. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Russian Universities Reports. Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Universities Reports. Mathematics, 2019, Volume 24, Issue 126, Pages 204–210
DOI: https://doi.org/10.20310/1810-0198-2019-24-126-204-210
(Mi vtamu147)
 

Scientific articles

Projective congruent symmetric matrices enumeration

O. A. Starikova

North-Eastern State University
References:
Abstract: Projective spaces over local ring $R=2R$ with principal maximal ideal $J,$ $1+J\subseteq R^{*2}$ have been investigated. Quadratic forms and corresponding symmetric matrices $A$ and $B$ are projectively congruent if $kA = UBU^T$ for a matrix $U \in GL(n,R)$ and for some $k \in R^{*}.$ In the case of $k=1$ quadratic forms (corresponding symmetric matrices) are called congruent. The problem of enumerating congruent and projective congruent quadratic forms is based on the identification of the (unique) normal form of the corresponding symmetric matrices and is related to the theory of quadratic form schemes. Over the local ring $R$ on conditions $R^{*}/R^{*2}\!=\!\lbrace 1, -1, p,-p\rbrace$ and $D(1,1)\!=\!D(1,p)\!=\!\lbrace 1,p\rbrace,$ $D(1,-1)\!=\!D(1,-p)\!=\!\lbrace 1,-1,p,-p\rbrace$ (unique) normal form of congruent symmetric matrices over ring $R$ is detected. Quantities of congruent and projective congruent symmetric matrix classes is found when maximal ideal is nilpotent.
Keywords: projective spaces, local rings, projective congruence, projective equivalence.
Received: 26.02.2019
Bibliographic databases:
Document Type: Article
UDC: 512.7
Language: Russian
Citation: O. A. Starikova, “Projective congruent symmetric matrices enumeration”, Russian Universities Reports. Mathematics, 24:126 (2019), 204–210
Citation in format AMSBIB
\Bibitem{Sta19}
\by O.~A.~Starikova
\paper Projective congruent symmetric matrices enumeration
\jour Russian Universities Reports. Mathematics
\yr 2019
\vol 24
\issue 126
\pages 204--210
\mathnet{http://mi.mathnet.ru/vtamu147}
\crossref{https://doi.org/10.20310/1810-0198-2019-24-126-204-210}
\elib{https://elibrary.ru/item.asp?id=38253924}
Linking options:
  • https://www.mathnet.ru/eng/vtamu147
  • https://www.mathnet.ru/eng/vtamu/v24/i126/p204
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Universities Reports. Mathematics
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :41
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024