Tambov University Reports. Series: Natural and Technical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Russian Universities Reports. Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tambov University Reports. Series: Natural and Technical Sciences, 2017, Volume 22, Issue 6, Pages 1285–1292
DOI: https://doi.org/10.20310/1810-0198-2017-22-6-1285-1292
(Mi vtamu130)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

About one quasi-metric space

T. V. Zhukovskayaa, E. S. Zhukovskiybc

a Tambov State Technical University
b Tambov State University named after G.R. Derzhavin
c RUDN University
Full-text PDF (228 kB) Citations (3)
References:
Abstract: The MM-space (X,ρ)(X,ρ) is defined as a non-empty set XX with distance ρ:X2R+ satisfying the axiom of identity and the weakened triangle inequality. The M-space (X,ρ) belongs to the class of f-quasi-metric spaces, and the map ρ may not be (c1,c2)-quasi-metric for any values of c1,c2; and (c1,c2)-quasi-metric space may not be an M-space. The properties of the M-space are investigated. An extension of the Krasnosel'skii theorem about a fixed point of a generally contracting map to the M-space is obtained.
Keywords: quasi-metric, triangle inequality, topology, fixed point, generalized contraction.
Funding agency Grant number
Russian Foundation for Basic Research 17-41-680975
Russian Science Foundation 15-11-10021
The present research is supported by the Russian Fund for Basic Research (project № 17-41-680975) - § 1 and by the Russian Scientific Fund (the Agreement № 15-11-10021) - § 2.
Received: 13.08.2017
Document Type: Article
UDC: 517.988.63, 515.124
Language: Russian
Citation: T. V. Zhukovskaya, E. S. Zhukovskiy, “About one quasi-metric space”, Tambov University Reports. Series: Natural and Technical Sciences, 22:6 (2017), 1285–1292
Citation in format AMSBIB
\Bibitem{ZhuZhu17}
\by T.~V.~Zhukovskaya, E.~S.~Zhukovskiy
\paper About one quasi-metric space
\jour Tambov University Reports. Series: Natural and Technical Sciences
\yr 2017
\vol 22
\issue 6
\pages 1285--1292
\mathnet{http://mi.mathnet.ru/vtamu130}
\crossref{https://doi.org/10.20310/1810-0198-2017-22-6-1285-1292}
Linking options:
  • https://www.mathnet.ru/eng/vtamu130
  • https://www.mathnet.ru/eng/vtamu/v22/i6/p1285
  • This publication is cited in the following 3 articles:
    1. E. S. Zhukovskiy, “Geometric progressions in distance spaces; applications to fixed points and coincidence points”, Sb. Math., 214:2 (2023), 246–272  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. E. S. Zhukovskii, “O probleme suschestvovaniya nepodvizhnoi tochki obobschenno szhimayuschego mnogoznachnogo otobrazheniya”, Vestnik rossiiskikh universitetov. Matematika, 26:136 (2021), 372–381  mathnet  crossref
    3. E. S. Zhukovskiy, “The fixed points of contractions of f-quasimetric spaces”, Siberian Math. J., 59:6 (2018), 1063–1072  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Universities Reports. Mathematics
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :55
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025