Tambov University Reports. Series: Natural and Technical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Russian Universities Reports. Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tambov University Reports. Series: Natural and Technical Sciences, 2017, Volume 22, Issue 3, Pages 565–570
DOI: https://doi.org/10.20310/1810-0198-2017-22-3-565-570
(Mi vtamu114)
 

Scientific articles

On convergence in the space of closed subsets of a metric space

E. A. Panasenko

Tambov State University named after G.R. Derzhavin
References:
Abstract: We consider the space ${\rm clos}(X)$ of closed subsets of unbounded (not necessarily separable) metric space $(X, \varrho_{_X})$ endowed with the metric $\rho_{_X}^{\rm cl}$ introduced in [Zhukovskiy E.S., Panasenko E.A. // Fixed Point Theory and Applications. 2013:10]. It is shown that if any closed ball in the space $(X, \varrho_{_X})$ is totaly bounded,
then convergence in the space $\left({\rm clos}(X), \rho_{_X}^{\rm cl}\right)$ of a sequence $\{F_i\}_{i=1}^\infty$ to $F$ is equivalent to convergence in the sense of Wijsman, that is to convergence for each $x \in X$ of the distances $\varrho_{_X}(x, F_i)$ to $\varrho_{_X}(x, F).$
Keywords: space of closed subsets of a metric space, Wijsman convergence, metrizability.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00553
16-01-00386
The work is partially supported by the Russian Fund for Basic Research (projects № 17-01-00553, № 16-01-00386).
Received: 15.02.2017
Document Type: Article
UDC: 515.124
Language: Russian
Citation: E. A. Panasenko, “On convergence in the space of closed subsets of a metric space”, Tambov University Reports. Series: Natural and Technical Sciences, 22:3 (2017), 565–570
Citation in format AMSBIB
\Bibitem{Pan17}
\by E.~A.~Panasenko
\paper On convergence in the space of closed subsets of a metric space
\jour Tambov University Reports. Series: Natural and Technical Sciences
\yr 2017
\vol 22
\issue 3
\pages 565--570
\mathnet{http://mi.mathnet.ru/vtamu114}
\crossref{https://doi.org/10.20310/1810-0198-2017-22-3-565-570}
Linking options:
  • https://www.mathnet.ru/eng/vtamu114
  • https://www.mathnet.ru/eng/vtamu/v22/i3/p565
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Universities Reports. Mathematics
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :45
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024