Russian Universities Reports. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Russian Universities Reports. Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Universities Reports. Mathematics, 2019, Volume 24, Issue 125, Pages 119–136
DOI: https://doi.org/10.20310/1810-0198-2019-24-125-119-136
(Mi vtamu103)
 

This article is cited in 1 scientific paper (total in 1 paper)

Scientific articles

Asymptotic expansion of a solution for one singularly perturbed optimal control problem with a convex integral quality index depends on slow variables and smooth control constraints

A. A. Shaburov

Ural Federal University named after the first President of Russia B.N. Yeltsin
Full-text PDF (569 kB) Citations (1)
References:
Abstract: The paper deals with the problem of optimal control with a convex integral quality index depends on slow variables for a linear steady-state control system with a fast and slow variables in the class of piecewise continuous controls with a smooth control constraints
$$ \begin{cases} \dot{x}_{\varepsilon} = A_{11}x_{\varepsilon}+A_{12}y_{\varepsilon}+B_{1}u, & t\in[0,T], \qquad \|u\|\leqslant 1,\\ \varepsilon\dot{y}_{\varepsilon} = A_{21}x_{\varepsilon}+A_{22}y_{\varepsilon}+B_{2}u, & x_{\varepsilon}(0)=x^{0}, \quad y_{\varepsilon}(0)=y^{0},\\ J_\varepsilon(u):= \varphi(f(x_{\varepsilon}(T)) + \int_0^T \|u(t)\|^2\,dt\rightarrow \min, \end{cases} $$
where $x_\varepsilon\in\mathbb{R}^{n}$, $y_\varepsilon\in\mathbb{R}^{m}$, $ u\in\mathbb{R}^{r}$; $A_{ij}$, $B_{i}$, $i,j=1,2$ — are constant matrices of the corresponding dimension, and $\varphi(\cdot)$ – is the strictly convex and cofinite function that is continuously differentiable in $\mathbb{R}^{n}$ in the sense of convex analysis. In the general case, Pontryagin's maximum principle is a necessary and sufficient optimum condition for the optimization of a such a problem. The initial vector of the conjugate state $l_\varepsilon$ is the unique vector, thus determining the optimal control. It is proven that in the case of a finite number of control switching points, the asymptotics of the vector $l_\varepsilon$ has the character of a power series.
Keywords: optimal control, singular perturbation problems, asymptotic expansions, small parameter.
Received: 17.01.2019
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. A. Shaburov, “Asymptotic expansion of a solution for one singularly perturbed optimal control problem with a convex integral quality index depends on slow variables and smooth control constraints”, Russian Universities Reports. Mathematics, 24:125 (2019), 119–136
Citation in format AMSBIB
\Bibitem{Sha19}
\by A.~A.~Shaburov
\paper Asymptotic expansion of a solution for one singularly perturbed optimal control problem with a convex integral quality index depends on slow variables and smooth control constraints
\jour Russian Universities Reports. Mathematics
\yr 2019
\vol 24
\issue 125
\pages 119--136
\mathnet{http://mi.mathnet.ru/vtamu103}
\crossref{https://doi.org/10.20310/1810-0198-2019-24-125-119-136}
\elib{https://elibrary.ru/item.asp?id=37526686}
Linking options:
  • https://www.mathnet.ru/eng/vtamu103
  • https://www.mathnet.ru/eng/vtamu/v24/i125/p119
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Universities Reports. Mathematics
    Statistics & downloads:
    Abstract page:178
    Full-text PDF :51
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024