Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2023, Volume 19, Issue 3, Pages 391–402
DOI: https://doi.org/10.21638/11701/spbu10.2023.307
(Mi vspui591)
 

Computer science

Microgrid control for renewable energy sources based on deep reinforcement learning and numerical optimization approaches

A. Yu. Zhadan, H. Wu, P. S. Kudin, Y. Zhang, O. L. Petrosian

St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
References:
Abstract: Optimal scheduling of battery energy storage system plays crucial part in distributed energy system. As a data driven method, deep reinforcement learning does not require system knowledge of dynamic system, present optimal solution for nonlinear optimization problem. In this research, financial cost of energy consumption reduced by scheduling battery energy using deep reinforcement learning method (RL). Reinforcement learning can adapt to equipment parameter changes and noise in the data, while mixed-integer linear programming (MILP) requires high accuracy in forecasting power generation and demand, accurate equipment parameters to achieve good performance, and high computational cost for large-scale industrial applications. Based on this, it can be assumed that deep RL based solution is capable of outperform classic deterministic optimization model MILP. This study compares four state-of-the-art RL algorithms for the battery power plant control problem: PPO, A2C, SAC, TD3. According to the simulation results, TD3 shows the best results, outperforming MILP by 5 % in cost savings, and the time to solve the problem is reduced by about a factor of three.
Keywords: reinforcement learning, energy management system, distributed energy system, numerical optimization.
Funding agency Grant number
Saint Petersburg State University 94062114
This work was supported by St. Petersburg State University (project ID: 94062114).
Received: May 26, 2023
Accepted: June 8, 2023
Document Type: Article
UDC: 519.217
MSC: 90C40
Language: English
Citation: A. Yu. Zhadan, H. Wu, P. S. Kudin, Y. Zhang, O. L. Petrosian, “Microgrid control for renewable energy sources based on deep reinforcement learning and numerical optimization approaches”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:3 (2023), 391–402
Citation in format AMSBIB
\Bibitem{ZhaWuKud23}
\by A.~Yu.~Zhadan, H.~Wu, P.~S.~Kudin, Y.~Zhang, O.~L.~Petrosian
\paper Microgrid control for renewable energy sources based on deep reinforcement learning and numerical optimization approaches
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2023
\vol 19
\issue 3
\pages 391--402
\mathnet{http://mi.mathnet.ru/vspui591}
\crossref{https://doi.org/10.21638/11701/spbu10.2023.307}
Linking options:
  • https://www.mathnet.ru/eng/vspui591
  • https://www.mathnet.ru/eng/vspui/v19/i3/p391
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:31
    Full-text PDF :26
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024