Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2023, Volume 19, Issue 3, Pages 374–390
DOI: https://doi.org/10.21638/11701/spbu10.2023.306
(Mi vspui590)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied mathematics

On the stability of the zero solution with respect to a part of variables in linear approximation

P. A. Shamanaev

National Research Mordovia State University, 68, Bolshevistskaya ul., Saransk, Republic of Mordovia, 430005, Russian Federation
Full-text PDF (259 kB) Citations (1)
References:
Abstract: The article presents the sufficient conditions for stability and asymptotic stability with respect to a part of the variables of the zero solution of a nonlinear system in the linear approximation. the case is considered when the matrix of the linear approximation may contain eigenvalues with zero real parts and the algebraic and geometric multiplicities of these eigenvalues may not coincide. The approach is based on establishing some correspondence between the solutions of the investigated system and its linear approximation. The solutions of such systems starting in a sufficiently small zero neighborhood and the systems themselves possess the same componentwise asymptotic properties in this case. Such solutions' properties are stability and asymptotic stability with respect to some variables, and for systems componentwise local asymptotic equivalence and componentwise local asymptotic equilibrium. Considering the correspondence between the solutions of systems as an operator defined in a Banach space, there is proved that it has at least one fixed point according to the Schauder's principle. The operator allows to construct a mapping that establishes the relationship between the initial points of the investigated system and its linear approximation. Further, a conclusion about the componentwise asymptotic properties of solutions of the nonlinear system is made on the basis of estimates of the fundamental matrix of the linear approximation rows' entries. There is given an example of the investigation of stability and asymptotic stability with respect to a part of the variables of the zero solution of a nonlinear system is given, when the linear approximation matrix contains one negative and one zero eigenvalues, and the algebraic and geometric multiplicities of the zero eigenvalue do not coincide.
Keywords: ordinary differential equations, partial stability, local componentwise asymptotic equivalence, Schauder principle.
Received: March 26, 2023
Accepted: June 8, 2023
Document Type: Article
UDC: 517.928
MSC: 34D20
Language: Russian
Citation: P. A. Shamanaev, “On the stability of the zero solution with respect to a part of variables in linear approximation”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:3 (2023), 374–390
Citation in format AMSBIB
\Bibitem{Sha23}
\by P.~A.~Shamanaev
\paper On the stability of the zero solution with respect to a part of variables in linear approximation
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2023
\vol 19
\issue 3
\pages 374--390
\mathnet{http://mi.mathnet.ru/vspui590}
\crossref{https://doi.org/10.21638/11701/spbu10.2023.306}
Linking options:
  • https://www.mathnet.ru/eng/vspui590
  • https://www.mathnet.ru/eng/vspui/v19/i3/p374
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:37
    Full-text PDF :16
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024