Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2011, Issue 4, Pages 63–72 (Mi vspui59)  

Applied mathematics

Schur’s rational approximation of Schur’s functions

V. S. Mikheev

St. Petersburg State University, Faculty of Applied Mathematics and Control Processes
References:
Abstract: The problem of approximating elements from the class $H_2^+$ of the analytic functions in the closed unit disk $U$ assuming only real values on the segment [0,1] is investigated. As approximant class is taken to be ${\mathcal H}_{n}^{+}$ which is the class of irreducible real rational functions with the degrees of a numerator and a denominator not greater $n$. It is proved that if $f\in H_2^+$ and $f\notin {\mathcal H}_{k}^{+}$ where $k<n$ then any local minimizer of nonlinear programme $\displaystyle \|{f-g}\|^2\longrightarrow \min_{g\in {\mathcal H}_{n}^{+}}$ does not belong to ${\mathcal H}_{m}^{+}$, where $m<n$. The result is expanded to the class $S^+$ of Schur's functions selected from $H_2^+$ by the condition $\sup_{z\in U} |f(z)|\leq 1$. If ${\mathcal S}_n^+$ is a Schur's subclass of ${\mathcal H}_{n}^{+}$ then it is proved that, when $f\in S^+$ and $f\notin {\mathcal S}_{k}^{+}$, where $k<n$, any local minimizer of non linear programme $\displaystyle \|{f-g}\|^2\longrightarrow \min_{g\in {\mathcal S}_{n}^{+}}$ does not belong to ${\mathcal S}_{m}^{+}$, where $m<n$.
Keywords: unit disk, Schur’s function, approximation, rational function, Schur’s algorithm.

Accepted: May 19, 2011
Document Type: Article
UDC: 517.538.5+517.518.84
Language: Russian
Citation: V. S. Mikheev, “Schur’s rational approximation of Schur’s functions”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 4, 63–72
Citation in format AMSBIB
\Bibitem{Mik11}
\by V.~S.~Mikheev
\paper Schur’s rational approximation of Schur’s functions
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2011
\issue 4
\pages 63--72
\mathnet{http://mi.mathnet.ru/vspui59}
Linking options:
  • https://www.mathnet.ru/eng/vspui59
  • https://www.mathnet.ru/eng/vspui/y2011/i4/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Âåñòíèê Ñàíêò-Ïåòåðáóðãñêîãî óíèâåðñèòåòà. Ñåðèÿ 10. Ïðèêëàäíàÿ ìàòåìàòèêà. Èíôîðìàòèêà. Ïðîöåññû óïðàâëåíèÿ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024