Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2023, Volume 19, Issue 3, Pages 348–368
DOI: https://doi.org/10.21638/11701/spbu10.2023.304
(Mi vspui588)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied mathematics

Theoretical foundation for solving search problems by the method of maximum entropy

A. N. Prokaev

St. Petersburg federal Research Center of the Russian Academy of Sciences — Hi Tech Research and Development Office Ltd, 39, 14
Full-text PDF (737 kB) Citations (1)
References:
Abstract: The traditional problem of search theory is to develop a search plan for a physical object in the sea or on land. Known algorithms for the optimal distribution of search resources mainly use the exponential detection function. If we consider the search problem more broadly — as a problem of searching for various information, then the detection function can differ significantly from the exponential one. In this case, the solutions obtained using traditional algorithms may be correct from the point of view of mathematics, but unacceptable from the point of view of logic. In this paper, this problem is solved on the basis of the maximum entropy principle. The theorems are proved, as well as their consequences for four types of detection functions, which make it possible to create algorithms for solving various search problems based on the principle of maximum entropy.
Keywords: information theory, search theory, uniformly optimal search plan, detection function, maximum entropy principle.
Received: April 29, 2023
Accepted: June 8, 2023
Document Type: Article
UDC: 519.878
MSC: 90B40
Language: Russian
Citation: A. N. Prokaev, “Theoretical foundation for solving search problems by the method of maximum entropy”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:3 (2023), 348–368
Citation in format AMSBIB
\Bibitem{Pro23}
\by A.~N.~Prokaev
\paper Theoretical foundation for solving search problems by the method of maximum entropy
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2023
\vol 19
\issue 3
\pages 348--368
\mathnet{http://mi.mathnet.ru/vspui588}
\crossref{https://doi.org/10.21638/11701/spbu10.2023.304}
Linking options:
  • https://www.mathnet.ru/eng/vspui588
  • https://www.mathnet.ru/eng/vspui/v19/i3/p348
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024