Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2022, Volume 18, Issue 4, Pages 516–526
DOI: https://doi.org/10.21638/11701/spbu10.2022.406
(Mi vspui552)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied mathematics

New application of multiple linear regression method-A case in China air quality

Y. Hea, D. Qia, V. M. Bureab

a St Petersburg State University, 7–9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
b Agrophysical Research Institute, 14, Grazhdanskiy pr., St Petersburg, 195220, Russian Federation
Full-text PDF (899 kB) Citations (1)
References:
Abstract: In this paper, we propose an econometric model based on the multiple linear regression method. This research aims to evaluate the most important factors of the dependent variable. To be more specific, we consider the properties of this model, model quality, parameters test, checking the residual of the model. Then, to ensure that the prediction model is optimal, we use the backward elimination stepwise regression method to get the final model. At the same time, we also need to check the properties in each step. Finally, the results are illustrated by a real case in China air quality. The achieved model was applied to predict the 31 capital cities in Сhina's air quality index (AQI) during 2013–2019 per year. All calculations and tests were achieved by using $R$-studio. The dependent variable is the China's AQI. The control variables are six pollutant factors and four meteorological factors. In summary, the model shows that the most significant influencing factor of the AQI in China is PM$_{2.5}$, followed by O$_3$.
Keywords: multiple linear regression, air pollution, AQI, hypothesis test, PM$_{2.5}$, O$_3$.
Received: March 19, 2022
Accepted: September 1, 2022
Document Type: Article
Language: English
Citation: Y. He, D. Qi, V. M. Bure, “New application of multiple linear regression method-A case in China air quality”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:4 (2022), 516–526
Citation in format AMSBIB
\Bibitem{HeQiBur22}
\by Y.~He, D.~Qi, V.~M.~Bure
\paper New application of multiple linear regression method-A case in China air quality
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2022
\vol 18
\issue 4
\pages 516--526
\mathnet{http://mi.mathnet.ru/vspui552}
\crossref{https://doi.org/10.21638/11701/spbu10.2022.406}
Linking options:
  • https://www.mathnet.ru/eng/vspui552
  • https://www.mathnet.ru/eng/vspui/v18/i4/p516
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024