Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2022, Volume 18, Issue 4, Pages 487–500
DOI: https://doi.org/10.21638/11701/spbu10.2022.404
(Mi vspui550)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied mathematics

The method of successive approximations for constructing a model of dynamic polynomial regression

A. G. Golovkina, V. A. Kozynchenko, I. S. Klimenko

St Petersburg State University, 7–9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
References:
Abstract: Predicting the behavior of a certain process in time is an important task that arises in many applied areas, and information about the system that generated this process can either be completely absent or be partially limited. The only available knowledge is the accumulated data on past states and process parameters. Such a task can be successfully solved using machine learning methods, but when it comes to modeling physical experiments or areas where the ability of a model to generalize and interpretability of predictions are important, then the most machine learning methods do not fully satisfy these requirements. The forecasting problem is solved by building a dynamic polynomial regression model, and a method for finding its coefficients is proposed, based on the connection with dynamic systems. Thus, the constructed model corresponds to a deterministic process, potentially described by differential equations, and the relationship between its parameters can be expressed in an analytical form. As an illustration of the applicability of the proposed approach to solving forecasting problems, we consider a synthetic data set generated as a numerical solution of a system of differential equations that describes the Van der Pol oscillator.
Keywords: polynomial regression, dynamic systems, Taylor map.
Funding agency Grant number
Saint Petersburg State University 93024916
This work was financially supported by St Petersburg State University (project ID 93024916).
Received: August 11, 2022
Accepted: September 1, 2022
Bibliographic databases:
Document Type: Article
UDC: 519.876.5
MSC: 90C31
Language: Russian
Citation: A. G. Golovkina, V. A. Kozynchenko, I. S. Klimenko, “The method of successive approximations for constructing a model of dynamic polynomial regression”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:4 (2022), 487–500
Citation in format AMSBIB
\Bibitem{GolKozKli22}
\by A.~G.~Golovkina, V.~A.~Kozynchenko, I.~S.~Klimenko
\paper The method of successive approximations for constructing a model of dynamic polynomial regression
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2022
\vol 18
\issue 4
\pages 487--500
\mathnet{http://mi.mathnet.ru/vspui550}
\crossref{https://doi.org/10.21638/11701/spbu10.2022.404}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4567263}
Linking options:
  • https://www.mathnet.ru/eng/vspui550
  • https://www.mathnet.ru/eng/vspui/v18/i4/p487
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:71
    Full-text PDF :17
    References:22
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024