Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2022, Volume 18, Issue 4, Pages 443–453
DOI: https://doi.org/10.21638/11701/spbu10.2022.401
(Mi vspui547)
 

Applied mathematics

Convergence conditions for continuous and discrete models of population dynamics

A. Yu. Aleksandrov

St Petersburg State University, 7–9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
References:
Abstract: Some classes of continuous and discrete generalized Volterra models of population dynamics are considered. It is supposed that there are relationships of the type ‘`symbiosis’’, "compensationism’’ or "neutralism’’ between any two species in a biological community. The objective of the work is to obtain conditions under which the investigated models possess the convergence property. This means that the studying system admits a bounded solution that is globally asimptotically stable. To determine the required conditions, the V. I. Zubov’s approach and its discrete-time counterpart are used. Constructions of Lyapunov functions are proposed, and with the aid of these functions, the convergence problem for the considered models is reduced to the problem of the existence of positive solutions for some systems of linear algebraic inequalities. In the case where parameters of models are almost periodic functions, the fulfilment of the derived conditions implies that limiting bounded solutions are almost periodic, as well. An example is presented illustrating the obtained theoretical conclusions.
Keywords: population dynamics, convergence, almost periodic oscillations, asymptotic stability, Lyapunov functions.
Received: April 23, 2022
Accepted: August 1, 2022
Document Type: Article
UDC: 517.925.51
MSC: 37N25
Language: Russian
Citation: A. Yu. Aleksandrov, “Convergence conditions for continuous and discrete models of population dynamics”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:4 (2022), 443–453
Citation in format AMSBIB
\Bibitem{Ale22}
\by A.~Yu.~Aleksandrov
\paper Convergence conditions for continuous and discrete models of population dynamics
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2022
\vol 18
\issue 4
\pages 443--453
\mathnet{http://mi.mathnet.ru/vspui547}
\crossref{https://doi.org/10.21638/11701/spbu10.2022.401}
Linking options:
  • https://www.mathnet.ru/eng/vspui547
  • https://www.mathnet.ru/eng/vspui/v18/i4/p443
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024