Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2022, Volume 18, Issue 2, Pages 278–284
DOI: https://doi.org/10.21638/11701/spbu10.2022.208
(Mi vspui534)
 

This article is cited in 2 scientific papers (total in 2 papers)

Control processes

Zubov's optimum damping method in the control problem of one gyroscope system

A. P. Zhabko, N. A. Zhabko, P. V. Yakovlev

St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
Full-text PDF (493 kB) Citations (2)
References:
Abstract: The article considers the control problem of the aircraft cabin simulator with a four-axis gimbal gyroscopic system. The difficulty of the control problem of standard three-axis gimbal gyroscopic system is the presence of the phenomena ‘`gimbal lock’’ when the two axes of the system become collinear or close to collinear. One of the applied solutions to avoid "gimbal lock’’ is to use of the fourth additional gimbal. Such fore-axis gimbal systems are presented in the works of various autors. However, the problem of an optimal control of four-axis gimbal gyroscopic system is still under the question. Sufficient conditions for the solvability of the control problem are obtained on the base of the one-to-one interconnection between the movement of the cabin, the angular velocities of the cabin axes and the necessary deviations of gimbals rotation angles. This result is presented in lemmas. According this obtained sufficient conditions, the algorithm for constructing a control of the gimbal system in terms of optimal damping process of movement, according to Zubov’s method, is proposed.
Keywords: dumping, optimal control, gyroscope, rotation control.
Funding agency Grant number
Russian Foundation for Basic Research 20-07-00531 А
Received: January 12, 2022
Accepted: May 5, 2022
Document Type: Article
UDC: 519.71
MSC: 49N90
Language: Russian
Citation: A. P. Zhabko, N. A. Zhabko, P. V. Yakovlev, “Zubov's optimum damping method in the control problem of one gyroscope system”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:2 (2022), 278–284
Citation in format AMSBIB
\Bibitem{ZhaZhaYak22}
\by A.~P.~Zhabko, N.~A.~Zhabko, P.~V.~Yakovlev
\paper Zubov's optimum damping method in the control problem of one gyroscope system
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2022
\vol 18
\issue 2
\pages 278--284
\mathnet{http://mi.mathnet.ru/vspui534}
\crossref{https://doi.org/10.21638/11701/spbu10.2022.208}
Linking options:
  • https://www.mathnet.ru/eng/vspui534
  • https://www.mathnet.ru/eng/vspui/v18/i2/p278
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:80
    Full-text PDF :9
    References:23
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024