Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2022, Volume 18, Issue 1, Pages 179–187
DOI: https://doi.org/10.21638/11701/spbu10.2022.115
(Mi vspui525)
 

This article is cited in 7 scientific papers (total in 7 papers)

Control processes

Procedure for regularization of bilinear optimal control problems based on a finite-dimensional model

A. V. Arguchintsev, V. A. Srochko

Irkutsk State University, 1, ul. K. Marksa, Irkutsk, 664003, Russian Federation
Full-text PDF (548 kB) Citations (7)
References:
Abstract: An optimization problem of a linear system of ordinary differential equations on a set of piecewise continuous scalar controls with two-sided restrictions is considered. The cost functional contains the bilinear part (control, state) and a control square with a parameter, which plays the role of a regularization term. An approximate solution of the optimal control problem is carried out on a subset of piecewise constant controls with a non-uniform grid of possible switching points. As a result of the proposed parametrization, reduction to the finite-dimensional problem of quadratic programming was carried out with the parameter in the objective function and the simplest restrictions. In the case of a strictly convex objective function, the finite-dimensional problem can be solved in a finite number of iterations by the method of special points. For strictly concave objective functions, the corresponding problem is solved by simple or specialized brute force methods. In an arbitrary case, parameter conditions and switching points are found at which the objective function becomes convex or concave. At the same time, the corresponding problems of mathematical programming allow a global solution in a finite number of iterations. Thus, the proposed approach allows to approximate the original non-convex variation problem with a finite-dimensional model that allows to find a global solution in a finite number of iterations.
Keywords: linear phase system, bilinear-quadratic functional, finite-dimensional model, finite iterative methods, global solution.
Funding agency Grant number
Vladimir Potanin Foundation ГСАД-0022/21
This project was supported by the Vladimir Potanin Foundation (grant GSAD-0022/21).
Received: December 29, 2021
Accepted: February 1, 2022
Document Type: Article
UDC: 517.977
MSC: 49M25
Language: Russian
Citation: A. V. Arguchintsev, V. A. Srochko, “Procedure for regularization of bilinear optimal control problems based on a finite-dimensional model”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:1 (2022), 179–187
Citation in format AMSBIB
\Bibitem{ArgSro22}
\by A.~V.~Arguchintsev, V.~A.~Srochko
\paper Procedure for regularization of bilinear optimal control problems based on a finite-dimensional model
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2022
\vol 18
\issue 1
\pages 179--187
\mathnet{http://mi.mathnet.ru/vspui525}
\crossref{https://doi.org/10.21638/11701/spbu10.2022.115}
Linking options:
  • https://www.mathnet.ru/eng/vspui525
  • https://www.mathnet.ru/eng/vspui/v18/i1/p179
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024