Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2021, Volume 17, Issue 4, Pages 370–380
DOI: https://doi.org/10.21638/11701/spbu10.2021.405
(Mi vspui503)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied mathematics

Calculation of the turbulent boundary layer of a flat plate

V. A. Pavlovskya, S. A. Kabritsb

a St. Petersburg State Marine Technical University, 3, ul. Locmanskaya, St. Petersburg, 190121, Russian Federation
b St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Full-text PDF (623 kB) Citations (1)
References:
Abstract: The calculation of the turbulent boundary layer is performed when a steady flow of a viscous fluid flows around a flat plate. The calculation is based on a system of equations of turbulent fluid motion, obtained by generalizing Newton’s formula for the tangential stress in a fluid by giving it a power-law form followed by writing the corresponding rheological relationship in tensor form and substituting it into the equation of motion of a continuous medium in stresses. The use of this system for the problem of longitudinal flow around a flat plate after estimates of the boundary layer form made it possible to write a system of equations describing a two-dimensional fluid flow in the boundary layer of a flat plate. This system is reduced to one ordinary third-order equation, similarly to how Blasius performed it for a laminar boundary layer. When solving this equation, the method of direct reduction of the boundary value problem to the Cauchy problem was used. The results of this solution made it possible to determine expressions for the thickness of the boundary layer, displacement and loss of momentum. These values are compared with the available experimental data.
Keywords: turbulence, differential equations of turbulent flow, flat plate, boundary layer, Reynolds number, drag coefficient, boundary layer thickness, displacement thickness, momentum loss thickness.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-03-2020-094/1
This study was carried out within the framework of the state task for the implementation of research works N 075-03-2020-094/1 of June 10, 2020.
Received: October 3, 2020
Accepted: October 13, 2021
Document Type: Article
UDC: 532.5:001.5
MSC: 76F05
Language: Russian
Citation: V. A. Pavlovsky, S. A. Kabrits, “Calculation of the turbulent boundary layer of a flat plate”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:4 (2021), 370–380
Citation in format AMSBIB
\Bibitem{PavKab21}
\by V.~A.~Pavlovsky, S.~A.~Kabrits
\paper Calculation of the turbulent boundary layer of a flat plate
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2021
\vol 17
\issue 4
\pages 370--380
\mathnet{http://mi.mathnet.ru/vspui503}
\crossref{https://doi.org/10.21638/11701/spbu10.2021.405}
Linking options:
  • https://www.mathnet.ru/eng/vspui503
  • https://www.mathnet.ru/eng/vspui/v17/i4/p370
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:75
    Full-text PDF :18
    References:22
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024