Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2021, Volume 17, Issue 2, Pages 174–182
DOI: https://doi.org/10.21638/11701/spbu10.2021.207
(Mi vspui488)
 

This article is cited in 6 scientific papers (total in 6 papers)

Computer science

Theoretical foundations of probabilistic and statistical forecasting of agrometeorological risks

V. P. Yakusheva, V. M. Bureab, O. A. Mitrofanovaab, E. P. Mitrofanovab

a Agrophysical Research Institute, 14, Grazhdanskiy pr., St. Petersburg, 195220, Russian Federation
b St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Full-text PDF (457 kB) Citations (6)
References:
Abstract: Each model for forecasting agrometeorological risks based on the analysis of one-dimensional time series is effective for a certain range of initial information. In addition, the values of the initial observations can differ significantly for each specific case, respectively, the widespread use of one method for the analysis of arbitrary information can lead to significant inaccuracies. Thus, the problem of choosing a forecasting method for the initial set of agrometeorological data arises. In this regard, a universal adaptive probabilistic-statistical approach to predicting agrometeorological risks is proposed, which makes it possible to solve the problem of choosing a model. The article presents the results of the first stage of research carried out with the financial support of the Ministry of Education and Science of the Russian Federation: a brief overview of the current state of research in this direction is presented, theoretical foundations for predicting agrometeorological risks for a possible onset of drought and frost have been developed, including the task of generating initial information, a description of basic forecasting models, and also a direct description of the proposed approach with a presentation of the general structure of an intelligent system, on the basis of which the corresponding algorithm can be developed and automated as directions for further work.
Keywords: one-dimensional time series, forecasting, droughts, frosts, agrometeorological hazards, intelligent system.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2020-805
This work is supported by the Russian Federation (agreement with the Ministry of Science and Education) (project N 075-15-2020-805 dated October 02, 2020).
Received: December 27, 2020
Accepted: April 5, 2021
Bibliographic databases:
Document Type: Article
UDC: 51-76
MSC: 62P12
Language: Russian
Citation: V. P. Yakushev, V. M. Bure, O. A. Mitrofanova, E. P. Mitrofanov, “Theoretical foundations of probabilistic and statistical forecasting of agrometeorological risks”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:2 (2021), 174–182
Citation in format AMSBIB
\Bibitem{YakBurMit21}
\by V.~P.~Yakushev, V.~M.~Bure, O.~A.~Mitrofanova, E.~P.~Mitrofanov
\paper Theoretical foundations of probabilistic and statistical forecasting of agrometeorological risks
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2021
\vol 17
\issue 2
\pages 174--182
\mathnet{http://mi.mathnet.ru/vspui488}
\crossref{https://doi.org/10.21638/11701/spbu10.2021.207}
\elib{https://elibrary.ru/item.asp?id=46294090}
Linking options:
  • https://www.mathnet.ru/eng/vspui488
  • https://www.mathnet.ru/eng/vspui/v17/i2/p174
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:80
    Full-text PDF :21
    References:16
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024