Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2021, Volume 17, Issue 2, Pages 148–165
DOI: https://doi.org/10.21638/11701/spbu10.2021.205
(Mi vspui486)
 

This article is cited in 2 scientific papers (total in 2 papers)

Applied mathematics

Method for finding a solution to a linear nonstationary interval ODE system

A. V. Fominyhab

a Institute of Problems in Mechanical Engineering, Russian Academy of Sciences, 61, Bolshoy pr. V. O., St. Petersburg, 199178, Russian Federation
b St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Full-text PDF (503 kB) Citations (2)
References:
Abstract: The article analyses a linear nonstationary interval system of ordinary differential equations so that the elements of the matrix of the system are the intervals with the known lower and upper bounds. The system is defined on the known finite time interval. It is required to construct a trajectory, which brings this system from the given initial position to the given final state. The original problem is reduced to finding a solution of the differential inclusion of a special form with the fixed right endpoint. With the help of support functions, this problem is reduced to minimizing a functional in the space of piecewise continuous functions. Under a natural additional assumption, this functional is Gateaux differentiable. For the functional, Gateaux gradient is found, necessary and sufficient conditions for the minimum are obtained. On the basis of these conditions, the method of the steepest descent is applied to the original problem. Some numerical examples illustrate the constructed algorithm realization.
Keywords: linear nonstationary interval system of ordinary differential equations, differential inclusion, support function, the steepest descent method.
Funding agency Grant number
Russian Science Foundation 20-71-10032
The main results of this paper (Sections 3 and 5) were obtained in IPME RAS and supported by Russian Science Foundation (project N 20-71-10032).
Received: November 29, 2020
Accepted: April 5, 2021
Document Type: Article
UDC: 517.926.7+517.977.58
MSC: 34B05, 49M05
Language: English
Citation: A. V. Fominyh, “Method for finding a solution to a linear nonstationary interval ODE system”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:2 (2021), 148–165
Citation in format AMSBIB
\Bibitem{Fom21}
\by A.~V.~Fominyh
\paper Method for finding a solution to a linear nonstationary interval ODE system
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2021
\vol 17
\issue 2
\pages 148--165
\mathnet{http://mi.mathnet.ru/vspui486}
\crossref{https://doi.org/10.21638/11701/spbu10.2021.205}
Linking options:
  • https://www.mathnet.ru/eng/vspui486
  • https://www.mathnet.ru/eng/vspui/v17/i2/p148
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:138
    Full-text PDF :57
    References:22
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024