Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2011, Issue 3, Pages 64–71 (Mi vspui47)  

Applied mathematics

The hypodifferential and the $\varepsilon$-subdifferential of polyhedral function

L. N. Polyakova

St. Petersburg State University, Faculty of Applied Mathematics and Control Processes
References:
Abstract: The class of polyhedral functions is the simplest among the family of nonsmooth functions. One of the basic concepts of convex analysis is the notion of $\varepsilon$-subdifferential. The $\varepsilon$-subdifferential mapping is continuous in the Hausdorff metric. This property is used in the construction of continuous optimization methods for convex functions. The notions of hypodifferential and continuous hypodifferential were introduced by V. F. Demyanov. A polyhedron of special form can be taken as a continuous hypodifferential for a polyhedral function. In the paper, the properties of this hypodifferential and the $\varepsilon$-subdifferential of the polyhedral function are discussed. The relationship between them is established. A geometric interpretation of the hypodifferential is derived and the examples illustrating application of the developed theory are presented.
Keywords: convex function, subdifferential, hypodifferential.

Accepted: March 11, 2011
Document Type: Article
UDC: 539.85
Language: Russian
Citation: L. N. Polyakova, “The hypodifferential and the $\varepsilon$-subdifferential of polyhedral function”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 3, 64–71
Citation in format AMSBIB
\Bibitem{Pol11}
\by L.~N.~Polyakova
\paper The hypodifferential and the $\varepsilon$-subdifferential of polyhedral function
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2011
\issue 3
\pages 64--71
\mathnet{http://mi.mathnet.ru/vspui47}
Linking options:
  • https://www.mathnet.ru/eng/vspui47
  • https://www.mathnet.ru/eng/vspui/y2011/i3/p64
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024