Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2020, Volume 16, Issue 4, Pages 423–436
DOI: https://doi.org/10.21638/11701/spbu10.2020.407
(Mi vspui468)
 

This article is cited in 2 scientific papers (total in 2 papers)

Applied mathematics

On the qualitative properties of the solution of a nonlinear boundary value problem in the dynamic theory of $p$-adic strings

Kh. A. Khachatryanabc, H. S. Petrosyanad

a Lomonosov Moscow State University, 1, Leninskiye Gory, GSP-1, Moscow, 119991, Russian Federation
b Yerevan State University, 1, Alex Manoogian ul., Yerevan, 0025, Republic of Armenia
c National Academy of Sciences of the Republic of Armenia, 24/5, Marshal Baghramyan pr., Yerevan, 0019, Republic of Armenia
d Armenian National Agrarian University, 74, ul. Teryana, Yerevan, 0009, Republic of Armenia
Full-text PDF (805 kB) Citations (2)
References:
Abstract: The article considers a boundary value problem for a class of singular integral equations with an almost total-difference kernel and convex nonlinearity on the positive half-line. This problem arises in the dynamic theory of $ p $-adic open-closed strings. It is proved that any non-negative and bounded solution of a given boundary value problem is a continuous function and the difference between the limit and the solution is itself an integrable function on the positive half-line. For a particular case, it is proved that the solution is a monotonically non-decreasing function. A uniqueness theorem is established in the class of nonnegative and bounded functions. At the conclusion of the article, a specific applied example of this boundary problem is given.
Keywords: boundary value problem, convexity, continuity, summability, monotonicity, solution limit.
Funding agency Grant number
Russian Science Foundation 19-11-00223
This work was supported by the Russian Science Foundation (project N 19-11-00223).
Received: January 21, 2020
Accepted: October 23, 2020
Document Type: Article
UDC: 517.968.4+512.625.5
MSC: 45G05, 65R20
Language: Russian
Citation: Kh. A. Khachatryan, H. S. Petrosyan, “On the qualitative properties of the solution of a nonlinear boundary value problem in the dynamic theory of $p$-adic strings”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:4 (2020), 423–436
Citation in format AMSBIB
\Bibitem{KhaPet20}
\by Kh.~A.~Khachatryan, H.~S.~Petrosyan
\paper On the qualitative properties of the solution of a nonlinear boundary value problem in the dynamic theory of $p$-adic strings
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2020
\vol 16
\issue 4
\pages 423--436
\mathnet{http://mi.mathnet.ru/vspui468}
\crossref{https://doi.org/10.21638/11701/spbu10.2020.407}
Linking options:
  • https://www.mathnet.ru/eng/vspui468
  • https://www.mathnet.ru/eng/vspui/v16/i4/p423
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024