Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2020, Volume 16, Issue 4, Pages 375–390
DOI: https://doi.org/10.21638/11701/spbu10.2020.403
(Mi vspui464)
 

Applied mathematics

The study of nonlinear deformation of a plane with an elliptical inclusion for harmonic materials

V. M. Malkov, Yu. V. Malkova

St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
References:
Abstract: Analytical methods are used to study nonlinear deformation of a plane with an elliptical inclusion. The elastic properties of a material of the plane and inclusion are described with a semi-linear material. The external load is constant nominal (Piola) stresses at infinity. At the inclusion boundary, the conditions of the continuity for stresses and displacements are satisfied. Semi-linear material belongs to the class of harmonic, the methods of the theory of functions of a complex variable are applicable to solving nonlinear plane problems. Stresses and displacements are expressed in terms of two analytical functions of a complex variable, determined by the boundary conditions on the inclusion contour. It is assumed that the stress state of an inclusion is uniform (the tensor of nominal stresses is constant). This hypothesis made it possible to reduce the difficult nonlinear problem of conjugation of two elastic bodies to the solution of two more simpler problems for a plane with an elliptical hole. The validity of this hypothesis is justified by the fact that the constructed solution exactly satisfies all the equations and boundary conditions of the problem. The same hypothesis was used earlier by other authors to solve linear and nonlinear problems of an elliptical inclusion. In the article, a comparative analysis of the stresses and strains is carried out for two models of harmonic materials — semi-linear and John's. Various variants of values of elasticity parameters of the inclusion and matrix have been considered.
Keywords: nonlinear plane problem, elliptical inclusion, harmonic material, method of complex-variable functions.
Received: June 16, 2020
Accepted: October 23, 2020
Document Type: Article
UDC: 539.3, 517.5
MSC: 74B20
Language: Russian
Citation: V. M. Malkov, Yu. V. Malkova, “The study of nonlinear deformation of a plane with an elliptical inclusion for harmonic materials”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:4 (2020), 375–390
Citation in format AMSBIB
\Bibitem{MalMal20}
\by V.~M.~Malkov, Yu.~V.~Malkova
\paper The study of nonlinear deformation of a plane with an elliptical inclusion for harmonic materials
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2020
\vol 16
\issue 4
\pages 375--390
\mathnet{http://mi.mathnet.ru/vspui464}
\crossref{https://doi.org/10.21638/11701/spbu10.2020.403}
Linking options:
  • https://www.mathnet.ru/eng/vspui464
  • https://www.mathnet.ru/eng/vspui/v16/i4/p375
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:62
    Full-text PDF :13
    References:19
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024