Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2020, Volume 16, Issue 4, Pages 357–374
DOI: https://doi.org/10.21638/11701/spbu10.2020.402
(Mi vspui463)
 

Applied mathematics

Approximate factorization of positive matrices by using methods of tropical optimization

N. K. Krivulin, E. Yu. Romanova

St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
References:
Abstract: The problem of rank-one factorization of positive matrices with missing (unspecified) entries is considered where a matrix is approximated by a product of column and row vectors that are subject to box constraints. The problem is reduced to the constrained approximation of the matrix, using the Chebyshev metric in logarithmic scale, by a matrix of unit rank. Furthermore, the approximation problem is formulated in terms of tropical mathematics that deals with the theory and applications of algebraic systems with idempotent addition. By using methods of tropical optimization, direct analytical solutions to the problem are derived for the case of an arbitrary positive matrix and for the case when the matrix does not contain columns (rows) with all entries missing. The results obtained allow one to find the vectors of the factor decomposition by using expressions in a parametric form which is ready for further analysis and immediate calculation. In conclusion, an example of approximate rank-one factorization of a matrix with missing entries is provided.
Keywords: positive matrix factorization, rank-one matrix approximation, log-Chebyshev distance function, tropical optimization, max-algebra.
Funding agency Grant number
Russian Foundation for Basic Research 20-010-00145
This work was supported by the Russian Foundation for Basic Research (grant N 20-010-00145).
Received: October 18, 2020
Accepted: October 23, 2020
Bibliographic databases:
Document Type: Article
UDC: 519.61+512.6
Language: Russian
Citation: N. K. Krivulin, E. Yu. Romanova, “Approximate factorization of positive matrices by using methods of tropical optimization”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:4 (2020), 357–374
Citation in format AMSBIB
\Bibitem{KriRom20}
\by N.~K.~Krivulin, E.~Yu.~Romanova
\paper Approximate factorization of positive matrices by using methods of tropical optimization
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2020
\vol 16
\issue 4
\pages 357--374
\mathnet{http://mi.mathnet.ru/vspui463}
\crossref{https://doi.org/10.21638/11701/spbu10.2020.402}
\elib{https://elibrary.ru/item.asp?id=44536089}
Linking options:
  • https://www.mathnet.ru/eng/vspui463
  • https://www.mathnet.ru/eng/vspui/v16/i4/p357
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:75
    Full-text PDF :10
    References:24
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024