Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2020, Volume 16, Issue 3, Pages 316–325
DOI: https://doi.org/10.21638/11701/spbu10.2020.308
(Mi vspui460)
 

This article is cited in 6 scientific papers (total in 6 papers)

Control processes

The stability of differential-difference equations with proportional time delay. I. Linear controlled system

A. V. Ekimov, A. P. Zhabko, P. V. Yakovlev

St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Full-text PDF (268 kB) Citations (6)
References:
Abstract: The article considers a controlled system of linear differential-difference equations with a linearly increasing delay. Sufficient conditions for the asymptotic stability of such systems are known; however, general conditions for the stabilizability of controlled systems and constructive algorithms for constructing stabilizing controls have not yet been obtained. For a linear differential-difference equation of delayed type with linearly increasing delay, the canonical Zubov transformation is applied and conditions for the stabilization of such systems by static control are derived. An algorithm for checking the conditions for the existence of a stabilizing control and for its constructing is formulated. New theorems on stability analysis of systems of linear differential-difference equations with linearly increasing delay are proven. The results obtained can be applied to the case of systems with several proportional delays.
Keywords: system of linear differential-difference equations, linearly increasing time delay, asymptotic stability, stabilizing control, asymptotic evaluation system.
Received: May 24, 2020
Accepted: August 13, 2020
Document Type: Article
UDC: 517.929
MSC: 34K20
Language: Russian
Citation: A. V. Ekimov, A. P. Zhabko, P. V. Yakovlev, “The stability of differential-difference equations with proportional time delay. I. Linear controlled system”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:3 (2020), 316–325
Citation in format AMSBIB
\Bibitem{EkiZhaYak20}
\by A.~V.~Ekimov, A.~P.~Zhabko, P.~V.~Yakovlev
\paper The stability of differential-difference equations with proportional time delay. I. Linear controlled system
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2020
\vol 16
\issue 3
\pages 316--325
\mathnet{http://mi.mathnet.ru/vspui460}
\crossref{https://doi.org/10.21638/11701/spbu10.2020.308}
Linking options:
  • https://www.mathnet.ru/eng/vspui460
  • https://www.mathnet.ru/eng/vspui/v16/i3/p316
    Cycle of papers
    This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:108
    Full-text PDF :30
    References:23
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024